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Motivation

All of us know curves like these ...
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But how to systematically integrate these into decision making for data
acquisition or improving efficiency and quality in model induction?
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Overview

This talk is based on our recent survey paper [Mohr and van Rijn, 2022]:
“Learning Curves for Decision Making in Supervised Machine Learning”.

Background on Learning Curves

Learning Curves for Decision Making

Literature Review
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Observation Learning Curves
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C(a, s) = E|dtr |=s [out-of-sample performance of a(dtr )] ,

where a is an algorithm that learns a model a(dtr ) from some data dtr .
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Iteration Learning Curves
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C(a, n, s) = E|dtr |=n [OOS score of a(dtr ) after s iterations]
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Utility Curves
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Other Performance Curves
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Empirical Learning Curves

Learning curves are unknown: The OOS cannot be computed (and much less its
expected value across different setups).

Remedy as usual: Estimate C(a, s) or C(a, n, s) on a concrete set of validation
data points.

We refer to the considered values for s as anchors.

Empirical learning curves can be expensive to compute, and there have been
papers solely on the analysis of empirical learning curves [Perlich et al., 2003].
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Empirical Learning Curves
Recommended Resources

LCDB (github.com/fmohr/lcdb) provides API access to

I accuracy/error/F1/log-loss/AUROC learning curves for

I 40 learners (default hyperparameters) on 240 datasets with

I at least 10 train/validation/test folds

LCDB is the largest and most flexible database for observation learning curves.

LCBench (github.com/automl/LCBench) provides API access to

I (balanced) accuracy of 50 episode iteration learning curves

I on a train/validation/test folds for

I 2000 NN architectures on 35 datasets
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Terminology

train set size |dtr| or number of iterations t

E
rr

o
r

R
a
te

Learning Curve

Limit Performance

Saturation Point/Performance

Pre-Exponential Point/Performance
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Well Behaved Learning Curves

Ideally, learning curves had some nice properties such as

I monotonicity (improvements cannot get lost)

I convexity (improvements occur at a systematic rate)

Are learning curves well behaved in this sense?

I Yes, mostly! (LCDB)

I No (empirical evidence on the nasty Double Descent, divergence, ...).

Depends on the type of learning/performance curve and the learner.

This is one reason why making the distinction is important when fitting curve
models ...
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Modelling a Learning Curve

Objective: Derive a model of the true learning curve based on the empirical
learning curve.

The empirical learning curve is the result of sampling from a stochastic process
that underlies heteroscedastic noise σ2

s stemming from randomness in data
splits and the learning algorithm itself.

It is typically assumed that this stochastic process follows the distribution

f (s) ∼ N (µs , σ
2
s ) = µs +N (0, σ2

s ),

where µs is the (true) average generalization performance of the learner at
anchor s.
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Modelling a Learning Curve
Point-Wise Models

In the simplest case, one just estimates the mean µs of the curve.

The noise σ2
s is just ignored.

One of the most commonly used model classes is the Inverse Power Law (IPL):

µ̂s = α + βs−γ ,

where α, β, γ > 0 (for descending curves, e.g., error rates).

However, a dozen of model classes have been proposed (Vierig and Loog 2022).
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Modelling a Learning Curve
The Inference Problem

For any parametric model, we will have parameters β1, .., βm to describe the
behavior of µs . The center of attention is the likelihood

P(β1, .., βm | D),

where D = {(s1, y1), .., (sn, yn)} is the set of observations of the learning curve.

For a point-wise model, we ask for the arg max of this expression, i.e., the MLE
for the parameters to obtain the most likely values for β1, .., βm.

This assignment of β1, .., βm can be computed rather efficiently with non-linear
regression methods such as the LM algorithm.
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Modelling a Learning Curve
What is the best model fit?

Even for a single model class, the best parameters depend on the objective.

I if the goal is to explain a learning curve on an observed range, one can
apply standard regression.

I if the goal is to extrapolate a learning curve, the parameters obtained from
standard regression are typically sub-optimal (since they give too much
weight on initial parts of the curve).

It has been (empirically) shown that, on the same datasets, a model can be
optimal w.r.t. the first question but sub-optimal w.r.t. the second one.

We are not aware of extrapolation approaches that explicitly consider this issue.
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Modelling a Learning Curve
Modeling Uncertainty

The point-wise estimate does not consider any type of uncertainty.

We can be uncertain about (at least) three things:

1. the gap between the predicted performance f̂ (s) and the true value µs at
some anchor s,

2. whether the current estimates of θ are the best we can get within our fixed
model class, and

3. uncertainty about whether or not the model class itself is appropriate.

Research papers often do not specify what type of uncertainty they look at; this
becomes only clear from the context.
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Modelling a Learning Curve
Aleatoric vs Epistemic Uncertainty

It is sensible to make the now common distinction between aleatoric and
epistemic uncertainty.

I The aleatoric (problem-inherent) uncertainty is σ2
s . An estimate comes for

free in CV but is missing in simple hold-out methods.

I The epistemic (sample-based) uncertainty depends on the number N of
observations from which β1, .., βm are estimated.

The epistemic uncertainty can be reduced by gathering more observations.

This is similar to GPs in which more data leads to reduced uncertainty in the
kernel-neighborhood of the observations.
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Modelling a Learning Curve
Range Estimates

Range estimates define lower and upper bounds for the estimate of µs .

... not necessarily (and usually not) the inf or sup of µs but simply express any
type of interval considered to meaningfully express uncertainty.

... often used to quantify the aleatoric uncertainty, e.g., by estimating µs as
above and adding confidence bands at each anchor s (even the known ones).
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Modelling a Learning Curve
Distribution Estimates

The parameters β1, .., βm describe the behavior of µs , so the likelihood

P(β1, .., βm | D)

quantifies the epistemic uncertainty about µs .

Thanks to Bayes we have that

P(β1, .., βm | D) ∝ P(D | β1, .., βm )P(β1, .., βm),

which is intractable but can be sampled from, e.g., via MCMC.

The aleatoric uncertainty σ2
s is not considered here. However, an estimate σ̂2

s

could be used if D had non-aggregated observations at anchors.
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Modelling a Learning Curve
Distribution Estimates

By sampling S samples from the posterior P(β1, .., βm | D), one can collect
predictions z1, .., zS = f(β1,..,βm)(s) for any anchor s.

This yields

µ̂P,s =
1

S

S∑
i=1

zi and, from this, the variance σ̂2
P,s =

1

S

S∑
i=1

(zi − µ̂s)2

The subscript P emphasizes that this is an estimate of the variance of P and
not of the aleatoric uncertainty σ2

s .

If the epistemic uncertainty is considered a Gaussian, then this yields a full
characterization of P.
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Decision Situations

There are at least three situations in which learning curves aid decision making:

1. Data Acquisition: The acquisition of how many additional labels is
(economically) reasonable?

2. Early Stopping: Stop model training as soon as limit/saturation
performance is reached.

3. Early Discarding: Stop model training as soon as it can be recognized that
the limit/saturation performance will not be at least τ .
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Learning Curves for Data Acquisition

For a single learner, learning curves based on training sizes give insights into the
possible limit performance.

Max/min-aggregating this over a portfolio of (high-variance) learners gives
insights into the intrinsic noise of the data.

If this capacity curve has plateaud, then the noise level has been reached, and
additional instances will not help improve performance.

Otherwise, we can try to predict the (utility) saturation point to plan the
acquisition of new labels.
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Learning Curves for Early Stopping

Early Stopping means interrupting the training process of a learner if the
(observation or iteration) learning curve has converged.

There is no notion of a baseline here.

“Early” since without this interruption training might have continued because

I more data is available, or

I other stopping criteria are not yet satisfied.

Examples:

I iteratively increase training sizes until no improvement occurs

I use validation data to detect a stall learning process
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Learning Curves for Early Discarding

Early Discarding means interrupting the training process of a learner if it will
not improve upon some baseline τ .

τ is typically the currently best solution during model selection.

What is coloquially meant by “best solution” is the learner that is best when
training a model on a given dataset size, typically between 70% and 90% of the
available data.
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Learning Curves for Early Discarding

An important sub-classification of decision problems is how fidelity can change
during the model selection process:

I Horizontal Model-Selection: The (finite) set of available learners is known
in advance, and their learning curves are grown simultaneously (Successive
Halving).

I Vertical Model-Selection: Learning curves of a stream of learners are grown
one by one (LCCV).

I Diagonal Model-Selection: The perspectives can mix (Hyperband,
Freeze-Thaw BO, Fabolas).
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Questions to ask about Learning Curves
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Resources Available for Decision Making
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Overview of Literature

I Structured based on the complexity of
the solution

I Various works use a complex model to
answer a simple question (which is not
wrong)

I Typically have the potential to answer
more complex questions

I Goal: give an overview of what has
already been done throughout the years

I Disclaimer: Will be a time journey, some
core ideas come from old papers but form
the basis of current works

I Aim at works that explicitly utilize
learning curves
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Identification of Saturation Performance psat

train set size |dtr| or number of iterations t
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Saturation Point/Performance

Pre-Exponential Point/Performance

I Observation curves: What is the best performance a given learner will obtain,
regardless of the amount of data

I Use case: Determine the effect of more data (data acquisition)

I Iteration curves: What is the best performance a given learner will obtain,
regardless of the number of iterations (e.g., epochs)?

I Use case: discard the learner if psat < τ (early discarding)
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Identification of Saturation Performance psat

I Well-studied from a theoretical viewpoint

I Insight: symmetrical behaviour between the training error and the
validation error

I Cortes et al. [1994] estimated the saturation performance by averaging the
train performance and test performance, once the train performance drops
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Identification of Saturation Point ssat
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I Observation curves: Minimal amount of data that obtains psat

I Iteration curves: minimal amount of iterations (e.g., epochs) that obtain
psat

I Use cases: early stopping, data acquisition

I Retrospective approaches vs. projective approaches
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Identification of Saturation Point – retrospective
approaches

I Iteration-based curves vs observation-based curves

I John and Langley [1996] propose the Probably Close Enough (PCE) measure,
based on probability and distance from the full dataset: P(acc(N)− acc(Ni )) < ε

I Provost et al. [1999] are the first to incorporate a geometric schedule bk (e.g.,
64, 128, 256, . . .) as opposed to an arithmetic schedule

I Additionally, they propose a dynamic programming approach to calculate the
optimal sampling strategy

I Linear regression with local sampling (LRLS)

I Finally, they formally prove that the geometric schedule is asymptotical optimal

I No meta-data was used
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Identification of Saturation Point – projective approaches

I Goal: try to determine saturation point before actually running on that
anchor

I Make use of meta-data (learning curve performance data of a given
algorithm/hyperparameter configuration on previous datasets)

I Leite and Brazdil [2004] utilize a geometric schedule
(91, 128, 181, 256, . . .), and run the algorithm on early anchors

I Based on these early anchors, they utilize a k-NN algorithm to identify the
most closely related datasets and determine the saturation point on these

I Leite and Brazdil [2004] experiment with various measures to aggregate
the saturation point from the related datasets
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Identification of Utility-based stopping point
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I Optimize utility of a certain cost concerning a certain model performance

I Use cases in data acquisition (cost of labelling) and early stopping (CPU
cost)
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Identification of Utility-based stopping point

I Very similar to progressive sampling by Provost
et al. [1999]

I Stop sampling once the utility degrades

I Main complication: unifying scale for model
performance and cost (training cost or acquisition
cost)

I Weiss and Tian [2008] define an explicit notion of
utility, where the user has to determine the cost of
acquiring labels and the cost of miss-classification
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Performance Bounding at Fixed Point(s)

train set size |dtr| or number of iterations t
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I Optimize utility of a certain cost concerning a certain model performance

I Use case: early discarding

I See also: Successive Halving [Jamieson and Talwalkar, 2016], Hyperband [Li et al.,
2017], but: no learning curves

I Easier problem than performance prediction (regression) . . .

I . . . but higher expectations for the correctness of a statement
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Data Allocation using Upper Bounds

I [Sabharwal et al., 2016] aim to answer the question, given a set of learners,
which one should be evaluated next

I For each learner, the learning curve across the last two anchors is
extrapolated linearly (using the most optimistic slope that is permitted by
the sampling uncertainty at each anchor)

I The learner that is projected to be the best at the final anchor will be
allocated the double amount of data

I The method is repeated until one algorithm reaches the final anchor

I Disadvantages: designed to work with a fixed set of algorithms (horizontal
algorithm configuration)
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Learning-curve based cross-validation

I LCCV aims to be a learning-curve-based version of cross-validation for
algorithm configuration (vertical algorithm configuration)

I Once it has determined an ‘incumbent’ (on full data), it will construct
learning curves for new configurations

I Build upon the assumption that learning curves are convex [Mohr and van
Rijn, 2021]
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Learning-curve based cross-validation

Similar to DAUB, it will extrapolate a learning curve using the most optimistic
extrapolation [Mohr and van Rijn, 2021]

Early discarding is based on two
criteria:

I Optimistic extrapolation
does not yield improvement
over incumbent

I Train error exceeds
validation error of incumbent 0 2000 4000 6000 8000 10000

0.0
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More conservative than successive halving
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Performance Prediction at Fixed Point(s)
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I At its core a regression problem

I Note that: Predicting the saturation performance is a special case of performance
prediction at fixed points

I Various types of meta-data: implicit dataset features, explicit dataset features and
algorithm features
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Implicit or Explicit Dataset Context

Very similar to the work of Leite and Brazdil [2004] predicting the saturation point,
Leite and Brazdil [2005] aim to predict the performance at a given point utilizing a
dataset with learning curves

A learning-curve-based distance measure is utilized to select the k most similar datasets

Learning curves can be quite different, and a
measure was developed to scale the curves of the
current dataset to other datasets

This work was extended by Leite and Brazdil [2010] to use explicit meta-features
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Generalization With an Explicit Algorithm Context

I Baker et al. [2018] utilize a learning curve model to predict for a given
configuration whether it will be competitive with the best found
configuration so far

I Their model is specialized in neural networks and includes beyond learning
curve data also (simplistic) data of the configuration (network width,
network depth)

I Long et al. [2020] build upon this work and extend it with additional
n-gram features. They report a better Spearman correlation score
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Quick recap . . .

Next, we will see methods that model the entire learning curve
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Performance Prediction at Any Point
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I Aims to model the entire learning curve

I Often used to do performance prediction at a given point

I Recall the various learning curve models (e.g., inverse power law)

I Distinguishing factor: how to deal with uncertainty
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Point estimates

I Various parametric-models can be used for learning curve modelling

I (to the best of our knowledge) Cortes et al. [1993] were the first to use the
inverse power law for modelling learning curves

I John and Langley [1996] introduce the notion of ‘Probably Close Enough’,
but also work with point estimates
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Range Estimates

I Mukherjee et al. [2003] model learning curves for 8 DNA datasets,
explicitly modelling a 25 and 75-percentile curve based on (MC)CV-folds

I Koshute et al. [2021] use the inverse power law to predict the minimum
anchor point on which a learner must be trained to reach near-saturation
performance

I They do this by fitting a learning curve model on the lower confidence
bounds of confidence intervals of known anchors

I This model is used to determine the anchor where the performance is
within an ε-distance from the saturation performance

I DAUB [Sabharwal et al., 2016] and LCCV [Mohr and van Rijn, 2021] use a
similar strategy to utilize range estimates in the model
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Estimate Distributions

I Domhan et al. [2015] take into account uncertainty about the model itself

I The approach assumes learning curves to be instances of a parametric
model that is a linear combination of known model classes, such as the
inverse power law, and others

I Monte-Carlo Markov Chains are used to estimate the posterior distribution

I This was used for early discarding of configurations that would not be
competitive

I Use a probability to determine whether with a certain probability a
configuration can be pruned
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Learning Curve models

Curve movels used by and figure by Domhan et al. [2015]
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Utility Prediction at Any Point

I Last [2007] utilizes the inverse power law to model the
performance component in the utility curves

I When the data acquisition costs are known, this approach
allows us to projectively calculate the optimal dataset size

I This approach is used by Sarkar et al. [2015] for automated
software configuration

I every instance is a parametrization of a software library, and
obtaining its label requires the costly execution of a
benchmark on such a configuration

I The goal is to understand how many observations need to
be acquired to be able to learn a reliable prediction model
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Performance at Any Point for Any Learner

I Assumption: by modelling learning curves across
learners, the models per learning curve might
improve

I Swersky et al. [2014] proposes
Freeze-Thaw-(Bayesian) Optimization, using a
Gaussian Process to model the asymptotic
performance with an exponentially decaying kernel
(iteration learning curves)

I Klein et al. [2017a] proposes FABOLOS
(observation learning curves), using Gaussian
Process to model full learning curves

I Klein et al. [2017b] utilize Bayesian Neural
Networks (having d+1 inputs), modelling both the
performance and the uncertainty
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Freeze-Thaw-(Bayesian) Optimization

Figure taken from Swersky et al. [2014]
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Bayesian Neural Network for Learning Curves

Figure taken from Klein et al. [2017b]
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Outlook

Summary

I Formal definitions about learning curves

I Three decision situations: data acquisition, early stopping and early
discarding

I Framework for various questions to be answered by learning curves

I Various concepts from early research are still commonly used in
modern papers

Outlook

I Call for universal benchmark to better compare methods

I Many papers answer a question that is harder than the situation

I None of the papers apply the full potential of meta-data yet

Get involved

I Learning Curves for Decision Making in Supervised Machine Learning –
A Survey [Mohr and van Rijn, 2022] (under review, Arxiv)

I Try out LCDB (pip install lcdb) / LCBench
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