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Abstract While other areas of machine learning have seen more and more automation, designing
a high-performing recommender system still requires a high level of human e�ort. Fur-
thermore, recent work has shown that modern recommender system algorithms do not
always improve over well-tuned baselines. A natural follow-up question is, “how do we
choose the right algorithm for a new dataset and performance metric?” In this work, we
start by giving the �rst large-scale study of recommender system approaches by comparing
18 algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We �nd
that the best algorithms and hyperparameters are highly dependent on the dataset and
performance metric, however, there are also strong correlations between the performance
of each algorithm and various meta-features of the datasets. Motivated by these �ndings,
we create RecZilla, a meta-learning approach to recommender systems that uses a model
to predict the best algorithm and hyperparameters for new, unseen datasets. By using far
more meta-training data than prior work, RecZilla is able to substantially reduce the level
of human involvement when faced with a new recommender system application. We not
only release our code and pretrained RecZilla models, but also all of our raw experimental
results, so that practitioners can train a RecZilla model for their desired performance metric:
https://github.com/naszi��a/reczi��a.

1 Introduction

While some areas of machine learning have bene�tted greatly from repurposing existing compu-
tation through pretrained models [20, 50, 32, 21, 44], recommender system (rec-sys) research has
followed a di�erent trajectory: despite their widespread usage across many e-commerce, social
media, and entertainment companies such as Amazon, YouTube, and Net�x [11, 26, 52], there is far
less work in reusing models. Many rec-sys techniques are designed and optimized with just a single
dataset in mind [26, 31, 11, 40, 55]. Intuitively, this might be because each rec-sys application is
highly unique based on the dataset and the target metric. For example, a typical user session looks
very di�erent among e.g. YouTube, Home Depot, and AirBnB [11, 40, 31]. However, this intuition
has not been formally established. Furthermore, recent work has shown that neural recommender
system algorithms do not always improve over well-tuned baselines such as :-nearest neighbor
and matrix factorization [18]. A natural question is then, “how do we choose the right algorithm
for a new dataset and performance metric?”

In this work, we show that the best algorithm and hyperparameters are highly dependent on
the dataset and user-de�ned performance metric. Speci�cally, we run the �rst large-scale study of
rec-sys approaches by comparing 18 algorithms across 85 datasets and 315 metrics. For each dataset
and algorithm pair, we test up to 100 hyperparameters (given a 10 hour time limit per pair). The
codebase that we release, which includes a uni�ed API for a large, diverse set of algorithms, datasets,
and metrics, may be of independent interest. We show that the algorithms do not generalize – the
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Figure 1: RecZilla recommends a parameterized rec-sys algorithm for a user-provided dataset and
performance metric. The RecZilla pipeline is built using a meta-dataset M that includes
many di�erent performance metrics evaluated on many di�erent rec-sys algorihtms on many
di�erent datasets; we estimate algorithm performance using dataset meta-features.

performance of algorithms changes substantially across datasets and across performance metrics.
Furthermore, the best hyperparameters on one dataset often perform signi�cantly worse than
the best hyperparameters on a di�erent dataset. On the other hand, we do show that various
meta-features of the dataset can be used to predict the performance of rec-sys algorithms.

Motivated by these �ndings, we introduce RecZilla, a meta-learning-based algorithm selection
approach (see Figure 1) inspired by SATzilla [57]. At the core of RecZilla is a model that, given a
user-de�ned performance metric, predicts the best rec-sys algorithm and hyperparameters for a new
dataset based on meta dataset features such as number of users and items, and spectral properties of
the interaction matrix. We show that RecZilla quickly �nds high-performing algorithms on datasets
it has never seen before. While there has been prior work on meta-learning for recommender
systems [16, 17], no prior work is metric-independent, searches for hyperparameters as well as
algorithms, or considers more than nine dataset families. By running an ablation study on the
number of meta-training datasets, we show that more dataset families are crucial to the success of
RecZilla. We release ready-to-use, pretrained RecZilla models for common test metrics, and we
release the raw results from our large-scale study, along with code so that practitioners can easily
train a new RecZilla model for their speci�c performance metric of interest.
Our contributions. We summarize our main contributions below.
• We run a large-scale study of recommender systems, showing that the best algorithm and
hyperparameters are highly dependent on the dataset and user-de�ned performance metric. We
also show that dataset meta-features are predictive of the performance of algorithms.

• We create RecZilla, an algorithm selection approach which, given a performance metric, e�-
ciently predicts the best algorithm and set of hyperparameters on new datasets.

• We release a public repository containing 85 datasets and 18 rec-sys algorithms, accessed through
a uni�ed API. Furthermore, we release both pretrained RecZilla models, and raw data so that
users can train a new RecZilla model on their desired metric.

Relatedwork. Recommender systems are awidely studied area of research [8]. Common approaches
include :-nearest neighbors [1], matrix factorization [39, 43], and deep learning approaches [11,
26, 52]. For a survey on recommender systems, see [8, 4]. A recent meta-study showed that of the
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12 neural rec-sys approaches published at top conferences between 2015 and 2018, 11 performed
worse than well-tuned baselines (e.g. nearest neighbor search or linear models) [18].

Algorithm selection for recommender systems was �rst studied in 2011 [34] by using a graph
representation of item ratings. Follow-up work used dataset meta-features to select the best nearest
neighbor and matrix factorization algorithms [23, 3, 28]. Subsequent work focused on improving
the model and framework [17] including studying 74 meta-features systematically [13]. More
recent approaches from 2018 run meta-learning for recommender systems by casting the meta-
problem itself as a collaborative �ltering problem. Performance is then estimated with subsampling
landmarkers [14, 16, 15]. No prior work in algorithm selection for rec-sys includes open-source
Python code. There is also work on automated machine learning (AutoML) for recommender
systems, without meta-learning [56, 6, 29, 30]. To the best of our knowledge, no meta-learning
or AutoML rec-sys papers have run experiments on more than nine dataset families or four test
metrics, and no prior work predicts hyperparameters in addition to algorithms.

2 Analysis of Recommender Systems
In this section, we present a large-scale empirical study of rec-sys algorithms across a diverse set
of datasets and metrics. We assess the following two research questions.
1. Generalizability. If a rec-sys algorithm or set of hyperparameters performs well on one dataset

and metric, will it perform well on other datasets or on other metrics?
2. Predictability. Given a metric, can various dataset meta-features be used to predict the perfor-

mance of rec-sys algorithms?
Experimental design. We run 18 rec-sys algorithms, including clustering-based, matrix factor-
ization, linear, and baseline methods. We run these algorithms on 85 datasets from 19 dataset
“families”: a family refers to an original dataset (such as Movielens), while “dataset” refers to a
single train-test split drawn from the original dataset, which may be a small subset of the original.
We use 21 di�erent base metrics (such as precision, recall, NDCG) computed at 15 di�erent cuto�
values. For full details of the algorithms, datasets, and metrics, see Appendix A.

For each dataset, we compute a train and test split based on leave-last-:-out (and our repository
also includes splits based on global timestamp). For eac algorithm, we expose several hyperpa-
rameters and give ranges based on common values. For each dataset, we run each algorithm on
a random sample of up to 100 hyperparameter sets. Each algorithm is allocated a 10 hour limit
for each dataset split; we train and test the algorithm with at most 100 hyperparameter sets on
an n1-highmem-2 CPU, until the time limit is reached. Each algorithm is trained on the train split,
and the performance metrics are computed on the test split. By running 18 algorithms, up to 100
hyperparameters, and 85 datasets, this resulted in 84 769 successful experiments, and by computing
315 metrics, our �nal meta-dataset of results includes more than 26 million evaluations.

Generalizability. Our �rst observation is that all algorithms perform well on some datasets, and
poorly on others. First we identify the best-performing hyperparameter set for each (algorithm,
dataset) pair—to simulate hyperparameter optimization using our meta-dataset. We then rank all
algorithms for each dataset, according to several performance metrics. If we focus on a single
metric, then most algorithms are ranked �rst according to this metric on at least one dataset.

Average performance is more varied: some algorithms tend to perform better than others.
Table 7 shows the mean, min (best) and max (worst) ranking of all 18 algorithms over all dataset and
all accuracy and hit-rate metrics. Nearly all algorithms are ranked �rst for at least one metric, on
at least one dataset; the only exception is Random, which has a minimum rank 2. Many algorithms
perform very well on average; interestingly, the three algorithms with the highest average ranking
each come from di�erent algorithm families: Item-KNN is a similarity-based metric, SLIM-BPR is
based on linear models, and SVD is a matrix factorization method. Furthermore, most algorithms
perform very poorly in some cases: the maximum rank is at least 15 (out of 18) for all algorithms.
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Predictability. We calculate 383 di�erent meta-features to characterize each dataset. These meta-
features include statistics on the rating matrix—including basic statistics, the distribution-based
features of Cunha et al. [13], and landmark features [14]—which measure the performance of
simple rec-sys algorithms on a subset of the training dataset. Since these meta-features are used
for algorithm selection in Section 3, they are calculated using only the training split of each dataset.
For more details on the dataset meta-features, see Appendix A.4.

We �nd that some meta-features are highly correlated with the performance of algorithms. For
example, “mean of item rating count distribution” has a correlation of 0.941 with SlopeOne, and
“median of item rating count distribution” has a correlation of 0.933 with CoClustering. See Table 8
for more details. This experiment motivates the design of RecZilla in the next section, which trains
a model using dataset meta-features to predict the performance of algorithms on new datasets.

In Appendix A, we train three di�erent meta-learner functions (XGBoost, KNN, and linear re-
gression) using our meta-dataset, to predict performance metric PREC@10 for 10 rec-sys algorithms
with high average performance. MAE decreases as more dataset families are added, suggesting that
it is possible to estimate rec-sys algorithm performance using dataset meta-features.

3 RecZilla: Automated Algorithm Selection
In the previous section, we found that (1) the best algorithm and hyperparameters strongly depend
on the dataset and user-chosen performance metric, and (2) the performance of algorithms can be
predicted from dataset meta-features. Points (1) and (2) naturally motivate an algorithm selection
approach to rec-sys powered by meta-learning.

In this section, we present RecZilla, which is motivated by a practical challenge: given a
performance metric and a new rec-sys dataset, quickly identify an algorithm and hyperparameters
that perform well on this dataset. This challenge arises in many settings—e.g., when selecting good
baseline algorithms for academic research, or when developing high-performing rec-sys algorithms
for a commercial application. We begin with an overview and then formally present our approach.
Overview. As alluded to earlier, RecZilla is an algorithm selection approach powered by meta-
learning. We use the results from the previous section as the meta-training dataset. Given a
user-speci�ed performance metric, we train a meta-model that predicts the performance of each
of a set of algorithms and hyperparameters on a dataset, by using meta-features of the dataset.
Given a new, unseen dataset, we compute the meta-features of the dataset, and then use the meta-
model to predict the performance of each algorithm, returning the best algorithm according to the
user-selected performance metric. See Figure 1, and see Appendix B for the full details of RecZilla.
Experimental setup. Focusing on the performance metric PREC@10, we build a meta-datasetM
using all rec-sys datasets, algorithms, and meta-features described in Section 2. All meta-learners
are evaluated using leave-one-dataset-out evaluation: we iteratively select each dataset family
as the meta-test dataset, and run the full RecZilla pipeline using the remaining datasets as the
meta-training data. Splitting on dataset families rather than datasets ensures that there is no test
data leakage. Then for each dataset ⇡ in the test set, we compare the performance metric of
the predicted best parameterized algorithm to the performance metric of the ground-truth best
algorithm using %Diff: the percentage di�erence of PREC@10 on the predicted best algorithm vs.
the ground-truth best algorithm.
Comparisons to existing methods. We compare RecZilla to polynomial SVM with 74 meta-features
(the best approach from a 2018 analysis [17]) and CF4CF-META [15], which combines CF4CF [16]
with earlier meta-learning approaches. Due to their basis on all prior work in the area, these two
methods can be seen as representative of all prior work on algorithm selection for recommender
systems. We refer to them by cunha2018 and cf4cf-meta. Note that cunha2018 has no open-source
code, and cf4c4-meta only has code in R. Furthermore, in order to give a more fair empirical
study, we implement both approaches directly within our codebase. Each model uses the same
meta-training datasets, algorithm selection procedure, and base algorithms. Since a main novelty
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Table 1: Comparison between RecZilla and two representative prior algorithm selection approaches.
We report the mean and standard deviation across 50 trials for 19 test sets, for 950 total trials.
The runtime is the average time it takes to output predictions on the meta-test dataset.

Approach Runtime (sec) %Di� (#) PREC@10 of best pred. (")
cunha2018 [17] 0.39 52.9 ± 23.0 0.00813 ± 0.0113
cf4cf-meta [15] 6.68 43.5 ± 21.8 0.00808 ± 0.00773
RecZilla 6.69 35.1± 24.1 0.00884± 0.00848

of RecZilla is predicting hyperparameters as well as algorithms, the other two approaches are only
given the algorithms with the default hyperparameters.

We compare RecZilla (with an XGBoost model) to cunha2018 and cf4c4-meta. The algorithms
are given all 18 dataset families not in the test set, to use as training data. We run 50 trials for all
19 possible test sets in the leave-one-dataset-out evaluation, for a total of 950 trials. See Table 1.
RecZilla outperforms the other two approaches in both %Di� and in terms of the PREC@10 value
of the rec-sys algorithm outputted by each meta-learning algorithm.

In Appendix B, we give an ablation study on the number of training meta-datapoints and
meta-features used by RecZilla, as well as the meta-model of RecZilla.

4 Conclusions, Limitations, and Broader Impact
In this work, we conducted the �rst large-scale study of rec-sys approaches: we compared 18
algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We showed that for
a given performance metric, the best algorithm and hyperparameters highly depend on the dataset.
We also �nd that various meta-features of the datasets are predictive of algorithmic performance
and runtimes. Motivated by these �ndings, we created RecZilla, the �rst metric-independent,
hyperparameter-aware algorithm selection approach to recommender systems. Through empirical
evaluation, we show that given a user-de�ned metric, RecZilla e�ectively predicts high-performing
algorithms and hyperparameters for new, unseen datasets, substantially reducing the need for hu-
man involvement. We release our code and pretrained RecZilla models, as well as raw experimental
results so that users can train new RecZilla models on their own test metrics of interest.
Limitations. While our work progresses prior work along several axes, there are still avenues
for improvement. First, the meta-learning problem in RecZilla is low-data. Although we added
nearly all common rec-sys research datasets into RecZilla, the result is still only 85 meta-datapoints
(datasets). While we guarded against over-�tting to the training data in numerous ways, RecZilla
can still be improved by more training data. Therefore, as new recommender system datasets are
released in the future, our hope is to add them to our API, so that RecZilla continuously improves
over time. Furthermore, the magnitude of our evaluation (78 929 rec-sys models trained) leaves our
meta-data susceptible to biases based on experiment success/failures. Therefore, RecZilla may have
higher uncertainty for the datasets and algorithms that are more likely to fail.
Broader impact. Our work is “meta-research”: there is not one speci�c application that we
target, but our work makes it substantially easier for researchers and practitioners to quickly train
recommender system models when given a new dataset. On the research side, this is a net positive
because researchers can much more easily include baselines, comparisons, and run experiments on
large numbers of datasets, all of which lead tomore principled empirical comparisons. On the applied
side, our day-to-day lives are becoming more and more in�uenced by recommendations generated
from machine learning models, which comes with pros and cons. These recommendations connect
users with needed items that they would have had to spend time searching for [36]. Although
these recommendations may lead to harmful e�ects such as echo chambers [24, 37], techniques to
identify and mitigate harms are improving [27, 45].
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5 Reproducibility Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s
contributions and scope? [Yes] [The main claims in the abstract and introduction re�ect
the paper’s contributions and scope.]

(b) Did you describe the limitations of your work? [Yes] [See Section 4.]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See Section 4.]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes] [We read the ethics review guidelines and ensured our paper conforms to them.]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] [We did not include
theoretical results.]

(b) Did you include complete proofs of all theoretical results? [N/A] [We did not include
theoretical results.]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements.txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a ���)? [Yes] [We include the code, data, and instructions to reproduce the
results here: https://github.com/naszi��a/reczi��a.]

(b) Did you include the raw results of running the given instructions on the given code and
data? [Yes] [We include our raw results; see https://github.com/naszi��a/reczi��a.]

(c) Did you include scripts and commands that can be used to generate the �gures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes] [We
include scripts to generate our exact results. See the scripts folder in https://github.
com/naszi��a/reczi��a.]

(d) Did you ensure su�cient code quality such that your code can be safely executed and the
code is properly documented? [Yes] [We included multipe documentation �les, and put in a
reasonable e�ort to make our code as easy to use as possible.]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, �xed
hyperparameter settings, and how they were chosen)? [Yes] [See Sections 2 and 3.]

(f) Did you ensure that you compared di�erent methods (including your own) exactly on
the same benchmarks, including the same datasets, search space, code for training and
hyperparameters for that code? [Yes] [Yes, see Section 3.]

(g) Did you run ablation studies to assess the impact of di�erent components of your approach?
[Yes] [We gave an ablation study in Section B.]

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] [In our
ablation, the same evaluation protocol was used.]

(i) Did you compare performance over time? [Yes] [See Section 3.]
(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] [We

ran 50 trials of our experiments in Section 3.]
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(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] [All of our experiments have error bars.]

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] [There do
not exist tabular or surrogate benchmarks for recommender systems.]

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
���s, internal cluster, or cloud provider)? [Yes] [We include this information in Section 3].

(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a ��� approach; and
also hyperparameters of your own method)? [Yes] [We explained hyperparameter tuning
in Section 3.]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] [See Section A.]

(b) Did you mention the license of the assets? [N/A] Our experiments were conducted only on
publicly available datasets.

(c) Did you include any new assets either in the supplemental material or as a ���? [N/A] We
did not include new assets.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Our experiments were conducted only on publicly available datasets.

(e) Did you discuss whether the data you are using/curating contains personally identi�able
information or o�ensive content? [N/A] Our experiments were conducted only on publicly
available datasets.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A] [We did not conduct research with human subjects.]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(���) approvals, if applicable? [N/A] [We did not conduct research with human subjects.]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A] [We did not conduct research with human subjects.]
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