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Abstract Hyperparameter optimization (HPO) is a well-studied research field. However, the effects and

interactions of the components in an HPO pipeline are not yet well investigated. Then, we

ask ourselves: Can the landscape of HPO be biased by the pipeline used to evaluate individual
configurations? To address this question, we proposed to analyze the effect of the HPO

pipeline on HPO problems using fitness landscape analysis. Particularly, we studied the DS-

2019 HPO benchmark data set, looking for patterns that could indicate evaluation pipeline

malfunction, and relate them to HPO performance. Our main findings are: (i) In most

instances, large groups of diverse hyperparameters (i.e., multiple configurations) yield the

same ill performance, most likely associated with majority class prediction models; (ii) in

these cases, a worsened correlation between the observed fitness and average fitness in the

neighborhood is observed, potentially making harder the deployment of local-search based

HPO strategies. Finally, we concluded that the HPO pipeline definition might negatively

affect the HPO landscape.

1 Introduction and Related Work

Modern data-driven approaches dealing with large-scale data require domain, data science and

technical expertise. The variety of application tasks (e.g., classification and object detection) often

require designing models that are not necessarily reusable in other tasks, and this process is both

resource-demanding and error-prone (Ojha et al. (2017), Elsken et al. (2019), Ren et al. (2021)). Thus,

automating the design of ML pipelines, a.k.a. AutoML (Hutter et al. (2019)), is much desirable.

AutoML is usually split into four main activities: Data preparation, feature engineering, model

generation, and model estimation (He et al. (2021)). Hyperparameter optimization (HPO, Bischl

et al. (2021)) is an important task in model generation. HPO aims at automatically tuning the

hyperparameters of learning algorithms, and as with all optimization problems, it is facing the

process of minimizing/maximizing a target function (e.g., performance metric of the model) subject

to a set of constraints. HPO is a well-studied field (Bischl et al. (2021)), but the effects and interaction

between the components of its pipeline is not yet well investigated. Recently, Pimenta et al. (2020)

proposed to characterize the search space of AutoML pipelines using fitness landscape analysis
(FLA, Pitzer and Affenzeller (2012)). In the same line, Traoré et al. (2021) proposed a FLA-base

framework to characterize NAS problems, and applied it to a multi-sensor data fusion problem

(Traoré et al. (2022)). Despite the great results and insights provided by these studies, the relation

between HPO and the rest of the HPO pipeline remains barely explored.

Therefore, in this study, we pose the following research question: Can the landscape of HPO
be biased by the pipeline used to evaluate individual configurations? To address this question,

we propose to study HPO in the context of AutoML using FLA. Particularly, using fitness distance
correlation (FDC, Jones and Forrest (1995)) and locality (Clergue et al. (2018)), we aim at patterns

that arise from evaluation pipelines issues, and assess how they could alter the landscapes of HPO

problems. The results on the DS-2019 HPO benchmark (Sharma et al. (2019)) show the existence of

large groups of diverse HP configurations that yield the same ill fitness value. This illness could
be explained by the fitness metric selection (e.g., predictive accuracy), that induces the generation
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of majority class predictors as a local optima configuration. A complementary analysis of locality

shows that the resulting landscapes are more rugged, with lesser correlation between the observed

fitness and the fitness in the neighborhood. In other words, these problems are hard to tackle using

a local-search strategy.

The rest of the paper is as follows: The next section introduces the methodology used in

the study, Section 3 presents results of landscape analysis on HPO problems, Section 4 provides

conclusions, and Section 5 discusses the limitations and impact of this work.

2 Methodology

Given a HPO problem, let 𝑆 be the HP configuration space, 𝑓 the fitness function that assigns a

value 𝑓 (𝑥) ∈ R to all configurations 𝑥 ∈ 𝑆 , and 𝑁 (𝑥) a neighborhood operator that provides a

structure to 𝑆 . Then, the fitness landscape is defined as L = (𝑆, 𝑓 , 𝑁 ).
We are interested in exploiting the landscape definition to study the relation between the HPO

landscape and the HPO pipeline, and check whether the pipeline may bias the HPO landscape.

Particularly, we propose to use the FDC and locality to characterize this relation. The motivation is

that issues related to the evaluation pipeline should affect the fitness of configurations irrespectively

of their configuration, and thus their distance to the optimum. In other words, repetitive or

grouping patterns (such as lines) might appear when visualizing distributions of distances to the

optimum. Moreover, the locality of the configuration space should be arbitrarily affected, i.e., some

configurations should present an unexpected or random behavior (in relation to the neighborhood).

Without loss of generality, we consider the problem of tuning the HPs of a fixed neural network

architecture to perform a task (e.g., classification). Typically, the HP configuration space consists of

mixed type features (continuous, discrete or categorical). Thus, we propose to evaluate the distance

between individuals using a dedicated similarity function, 𝛿 (𝑥,𝑦), introduced by Gower (1971).

Then, we define a neighborhood function 𝑁 (𝑥) = {𝑦 ∈ 𝑆 | 𝛿 (𝑥,𝑦) < Δ}.
The FDC is often interpreted as a measure of the existence of search trajectories from randomly

picked configurations to the known global optimum. In practice, the FDC is not collected as a

correlation score, but visualized as the distribution of fitness versus distance to the global optimum.

It writes as: FDC(𝑓 , 𝑥∗, 𝑆) = {(𝛿 (𝑥∗, 𝑦), 𝑓 (𝑦)) | ∀𝑦 ∈ 𝑆}, where 𝑥∗ ∈ 𝑆 is the global optimum.

On the other hand, locality corresponds to the relationship between the observed fitness and the

distribution of average fitness in the neighborhood (Clergue et al. (2018)).

3 Results

To evaluate the proposed methodology, we propose to analyze the DS-2019 HPO benchmark

data set. DS-2019 consists of a tabular benchmark for the scenario of tuning the HPs of a (fixed)

convolutional neural network (CNN), a ResNet-18, on ten instances of CV classification. For each

instance, 15 hyperparameters should be optimized, including the batch size, number of epochs and

momentum, among others.

3.1 Fitness Distance Correlation (FDC)
First, for each instance, we randomly sampled 1000 HP configurations, and computed the FDC

(Figure 1). Overall, the distances to the global optimum cover a wide range of values: the distribution

of distances is wide and uniform for most instances. This suggests a large diversity in the HP

configurations (with respect to the optimum), for the sample and potentially the whole configuration

space. Similarly, in most cases, the fitness also covers a wide range of values, i.e., all distributions

appear to be multi-modal, with a principal mode for large fitness values (i.e., good configurations),

and another mode for odd values. We checked the data distribution for each instance, and we notice

that the odd modes could be correlated to the majority class. Note that the fitness metric used is

the predictive accuracy. For example, on DVC it is around 50%, FLOWER around 25%, SCMNIST

2



around 65% and SVHN around 20%. In particular, configurations are affected regardless of the

distance to the optimum. In other words, very diverse configurations yield the same fitness value.

This phenomenon could be attached to issues with the learning process, failing to properly fit

the data and being stuck in poor local optima (i.e., majority class prediction), preventing them to

reach the fitness that their HP configuration would normally yield. Besides, there is no clear global

correlation between the observed fitness and distance to the global optimum. This could be caused

by the multi-modal nature of the distributions of fitness.

Figure 1: FDC plot for all of the instances, and the corresponding regression line in blue.

3.2 Neighborhood
Next, we seek to identify how the observed artifacts, i.e., the majority class predictors, affect the

locality of landscapes. Figure 2 shows the distribution of average neighbor fitness as a function of

the observed fitness, for six selected instances. The black dash-dotted line represents the bisector,

i.e., the line connecting all points of equal value on both axis. To generate the plots, we used the

previously sampled configurations, and identified the maximal pairwise distance (of any individual)

to the optimum maxdist, and maximum observed fitness maxfitness. Given a constant 𝐶 = 40, we

discretize the range of fitness values into intervals, where a step is equal to the maximum observed

fitness maxfitness divided by𝐶 . In order to decide if a configuration is a neighbor, we set Δ = maxdist/𝐶 .
Overall, we observe in most instances a strong correlation between the observed fitness and the

average fitness in the neighborhood. Indeed, the box-plots are aligned with the bisector. From the

perspective of local search, it is easy to navigate the configuration space by consistently improving

the fitness, from randomly distant and bad configurations, to configurations of high fitness.

Also, the instances with more uniform and wider distribution of fitness (Figure 1) tend to have

a near perfect correlation. On the other hand, the more the distributions are multi-modal and with

peaky modes, the worse the correlation between the variables of interest. This suggests that the

evaluation protocol could have an impact on the easiness and practicability of HPO landscapes,

assessed by the correlation.
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Figure 2: Distribution of the average fitness of neighbors as function of the observed fitness.

4 Conclusions and Future Work
In this paper, we investigate if AutoML pipelines can negatively affect the landscape of HPO

problems. More precisely, we address the following question: Can the landscape of HPO be
biased by the pipeline used to evaluate individual configurations? To tackle this question, we

have studied the fitness landscape of 10 HPO instances (from DS-2019 benchmark data set) using

the fitness distance correlation and locality.
The FDC analysis shows unhealthy patterns in most HPO instances. For DVC, FLOWER,

SCMNIST, and SVHN large groups of very diverse HP configurations with the same ill fitness value
are observed. These resulting peaks in fitness appear to be outliers in the respective distributions,

potentially associated with majority class predictors. Looking at the locality (fitness versus fitness

in the neighborhood), we observe two things: First, there is a correlation between both variables of

interest, suggesting that an easy path from randomly picked HP configurations could lead to the

best performers, i.e., local-search may do the job. Second, for HPO problems negatively affected

by the mentioned illness (i.e., the majority class predictors), the correlation between the current

fitness and fitness in the neighborhood is worsened, indicating more rugged local landscapes.

Even though the majority class prediction problem for models trained and evaluated using some

metrics (e.g., accuracy) is well known, the results show that the problem may not be taken seriously

into account. Thus, a great amount of resources is wasted when addressing HPO (i.e., many simple
majority class models are evaluated). Furthermore, the evidence show that the landscape of HPO
problems could be negatively affected by the evaluation pipeline being used.

Future work will further investigate the origin of such artifacts, as well as if they are present in

other HPO problems (other scenarios or instances considering different fitness metrics).
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5 Limitations and Broader Impact Statement

5.1 Limitations: Additional Aspects of FLA for HPO
The current FLA-based study on the effects and interactions of HPO in an AutoML pipeline lacks

from the full picture. Particularly, FDC and locality provides a limited approximation to the

landscape, thus additional aspects of FLA should be considered to further unveil these effects

and interactions. The FLA literature defines several tools to characterize different properties of
a landscape, including ruggedness, local optima cardinality, neutrality degree, and evolvability,

among others (Pitzer and Affenzeller (2012)).

For example, as a sneak peek of our future work, Figure 3 shows preliminary results of the

neutrality degree (Clergue et al. (2018)) as a function of the observed fitness for two instances.

The neutrality degree is defined as 𝑁𝑑 (𝑥) = |{𝑥 ′ ∈ 𝑁 (𝑥) | | 𝑓 (𝑥 ′) − 𝑓 (𝑥) |< 𝜖}|, and it is interpreted

as the number of neighbors of 𝑥 that have a similar fitness. In this case, we set 𝜖 = maxfitness/𝐶 .

Figure 3: Neutrality degree as function of the observed fitness, for CIFAR-10 and SCMNIST.

Overall, the neutrality degree is equal or greater than one for most ranges of fitness values.

In order words, most configurations have at least one neutral neighbor. Also, note that the FDC

and locality results for CIFAR-10 are good, while for SCMNIST, with a multi-modal distribution of

fitness (Figure 1), coupled with lower local correlation (i.e., between the fitness and the fitness in

the neighborhood, Figure 2), the results are bad. Regarding CIFAR-10, the neutrality degree is on

average consistently greater than two. In other words, most configurations have two or (many)

more neutral neighbors. On the other hand, for SCMNIST, the neutrality degree is inconsistent

and with lower values on average. In particular, 𝑁𝑑 is lower for fitness values ranging from 6.28

to 43.98%, i.e., generally bad configurations have fewer neutral neighbors than mid and good
configurations. Also, as expected, there is a huge number of neutral neighbors around the majority

class prediction fitness (65%) As a summary, the evaluation pipeline malfunction is responsible for

an imbalance landscape, i.e., the AutoML pipeline generates arbitrary peaks of fitness (low 𝑁𝑑 ) in

areas of expected continuous fitness.

5.2 Landscape Analysis for HPO Benchmarks: A Tool for Troubleshooting?
Generally speaking, the usefulness of FLA to characterize optimization problems is undoubtable.

However, can we use FLA as a general tool for HPO troubleshooting?. Furthermore, are the problems
observed in DS-2019 also present in other HPO benchmark data sets, e.g., KDD-2018 (van Rijn and

Hutter (2018)) and YAHPO (Pfisterer et al. (2021))? And are these artifacts real problems? One may

argue that this is the behavior of the learning algorithm applied to a model and data set given a

set of hyperparameters. Therefore, the achieved performance is just the expected one. However,

do we want to spend a non-neglectable amount of resources training and evaluating useless or
trivial models? In the case of HPO benchmarks, it may be a good idea to have this behavior, as we

may learn to avoid it on real applications. But, in our opinion, this issue should be avoided in real

applications, in order to save time/resources. Thus, the insights provided by FLA should be taken

into account to improve the design of HPO problems.
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