
Evolved Optimizer for Vision

Xiangning Chen1,2∗, Chen Liang1, Da Huang1, Esteban Real1, Yao Liu1†,
Kaiyuan Wang1, Cho-Jui Hsieh2, Yifeng Lu1, Quoc V. Le1

1
Google

2
Department of Computer Science, UCLA

Abstract We present an optimizer, Hero-Lion (EvoLved Sign Momentum), discovered by evolutionary

search from basic math operations in the AutoML-Hero project. It keeps track of only the

momentum and leverages the sign operation to calculate the update to the weights. Despite

the simplicity, Hero-Lion outperforms the commonly used optimizer, such as AdamW,

AdafactorW, and SGD with momentum, for training a variety of architectures on different

tasks. Notably, it improves the accuracy of Vision Transformer for up to 2% when trained

from scratch on ImageNet. When used in pre-training with larger data and model sizes,

Hero-Lion still outperforms AdamW and AdafactorW, and can save 2-5x compute. On

JFT-300M, ViT-L/16 trained by Hero-Lion matches the accuracy of the previous ViT-H/14

trained by AdamW. By replacing AdafactorW with Hero-Lion, we improve the ImageNet

accuracy of ViT-G/14, pre-trained on JFT-3B, from 90.45% to 90.71%. Besides, Hero-Lion

improves the contrastive pre-training of multi-modal Transformers by achieving ∼1% gain

of ImageNet zero-shot accuracy.

1 Introduction

Optimization algorithms play a fundamental role in training neural networks. Despite a tremendous

number of new optimizers introduced in recent years [2, 5, 26, 49], Adam [22], proposed in 2014,

and its variant with decoupled weight decay, AdamW [27], are still the de facto standard optimizers

for most deep neural networks, especially the recently proposed convolution-free or hybrid vision

models, e.g., Vision Transformer (ViT) [12], MLP-Mixer [41], CoAtNet [11], etc.

Besides handcrafted optimizers, the learning-to-optimize approach proposes to automatically

discover optimizers by training parameterizedmodels, e.g., neural networks, to output the updates [1,

23, 28, 43]. However, those black-box optimizers often fail to generalize to practical learning

tasks that train on larger models with longer training steps. Neural Optimizer Search [3] applies

reinforcement learning to discover new optimizers represented as binary trees composed from a

selected subset of operands and operators. However, the restricted search space limits the potential

of the search. For example, it cannot change how the estimated first or second moments are updated.

In this paper, we present an optimizer discovered in the AutoML-Hero project that leverages

the evolutionary search to discover novel machine learning algorithms from basic math operations.

Our proxy task trains a ViT [12] on ImageNet and we warm start the search with AdamW. The

evolutionary search discovers a simple and effective learning algorithm: Hero-Lion (short for

EvoLved Sign Momentum) that only tracks the momentum and does not apply the adaptive learning

rate like AdamW. It achieves superior generalization across various architectures (ViT, MLP-Mixer,

CoAtNet and ResNet), datasets (ImageNet, JFT, image-text pairs), and learning tasks (supervised

and contrastive). The main focus of this paper is to evaluate the discovered optimizer. We defer the

detailed discussion of the search method and the results in other domains to a more comprehensive

version later. Notably, Hero-Lion achieves up to 5x computational cost reduction when pre-training

ViT on JFT-300M (Figure 1) and improve the accuracy of ViT-B/16 for 2% when trained from scratch

∗
Work done as a student researcher at Google Brain.

†
Work done while at Google.

AutoML Conference 2022 Workshop Track © 2022 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


on ImageNet (Table 2). Besides, the gap between our optimizer and AdamW tends to enlarge on

bigger models and more challenging benchmarks (e.g., ImageNet A [17]). Our approach scales to

the largest ViT-G/14 and improves its ImageNet accuracy from 90.45% to 90.71% (Table 1). Apart

from the supervised setting, we also observe that Hero-Lion enhances the contrastive pre-training

of multi-modal Transformer by bringing ∼1% improvement on zero-shot accuracies (Table 3).

def train(w, g, m, v):
g2 = square(g)
m = interpolate(g, m, 0.9)
v = interpolate(g2, v, 0.999)
v_sqrt = sqrt(v)
update = m / v_sqrt
wd = w * 𝜆

update = update + wd
update = update * 𝑙𝑟

return update, m, v

Step 1: Initialize (AdamW)

def train(w, g, m, v):
g = clip_by_global_norm(g, 1.0)
g = arcsin(g)

m = interpolate(g, v, 0.9)

m2 = square(m)

v = interpolate(g, m, 1.1)

m_abs = sqrt(m2)

update = m / m_abs
wd = w * 𝜆

update = update + wd
update = update * 𝑙𝑟

return update, m, v

Step 2: Evolve

def train(w, g, m, v):
update = interpolate(g, m, 0.9)

update = sign(update)

m = interpolate(g, m, 0.99)
wd = w * 𝜆

update = update + wd
update = update * 𝑙𝑟

return update, m, v

Step 3: Simplify (Hero-Lion)

2 Method

Inspired by AutoML-Zero [34], we represent a training algorithm as a program, and the search space

consists of basic mathematical operations. We apply regularized evolution [33], and warm start the

search by initializing the population with AdamW [22, 27], an exceedingly popular optimizer used

in training state-of-the-art vision models. The proxy task is to train a small ViT on ImageNet-1K

for ∼50K steps and we treat the validation accuracy as the fitness. As shown in Step 1, AdamW

is represented as a function that takes in the weights (w), gradient (g), the estimated first (m) and
second (v) moments as inputs. It returns the update (update) to the weights, the new estimated

first and second moments that will be forwarded to the next training step. In the program, the

interpolate(x, y, 𝛽) = (1 - 𝛽)x + 𝛽y is the linear interpolation function, 𝜆 and 𝑙𝑟 are constants

that represent the weight decay factor and the peak learning rate. For simplicity, we omit the bias

correction term and the 𝜖 added to the gradient magnitude estimate for numerical stability.

The evolutionary search produces the program in Step 2, and we simplify it to get the final

algorithm (Hero-Lion). The statement using arcsin is removed since we observe no difference in

quality without it. We also omit the universal gradient clipping and merge the two interpolate
operations in Step 3. The derived algorithm entirely abandons the adaptive learning rate for

different weights, and the update magnitude is uniform by simply taking the sign operation. It
only tracks the momentum using exponential moving average (EMA) of the gradients thus cuts the

memory requirement of AdamW by half, which can be beneficial when training extremely giant

models [36, 46]. The decay factor used to track the momentum is 0.99 instead of the commonly

used default value 0.9 in AdamW, and it interpolates the momentum and the current gradient using

0.9 before applying the sign operation. Our intuition is that it remembers longer gradient history

for momentum estimate but focuses more on the current gradient (see Section 3.2 for an ablation).

We manually add a bias correction term (for mathematical soundness, has minor effects) and show

the full optimizer in Algorithm 2 (in the appendix). More details of the search space and search

method are deferred to the comprehensive version.

3 Evaluation

We perform extensive experiments spanning various datasets, architectures, and learning tasks.

We mainly compare our searched optimizer to AdamW [22, 27] (or AdafactorW [36] when memory

is a bottleneck) as it is exceedingly popular. The results of SGD with momentum is only included

2



Figure 1: ImageNet (Left), ReaL (Middle), and V2 (Right) accuracy vs. pre-training cost when training

ViTs on JFT-300M. Models are fine-tuned on ImageNet-1K at resolution 384
2
(392

2
for ViT-

H/14). See Table 4 (in the appendix) for the detailed numbers.

Table 1: Model Performance when pre-trained on JFT. Two giant ViTs are pre-trained on JFT-3B and

smaller ones are pre-trained on JFT-300M.

Model ViT-L/16512 ViT-H/14518 ViT-g/14518 ViT-G/14518

#Params 305.18M 633.47M 1.04B 1.88B

Optimizer AdamW Hero-Lion AdamW Hero-Lion AdamW Hero-Lion AdafactorW Hero-Lion

ImageNet 87.76 [12] / 87.72 88.50 88.55 [12] / 88.55 89.09 90.25 90.52 90.45 [46] 90.71 / 90.71★

ReaL 90.54 [12] / 90.46 90.91 90.72 [12] / 90.62 91.02 90.84 91.11 90.81 [46] 91.06 / 91.25★

V2 79.80 81.13 81.12 82.24 83.10 83.39 83.33 [46] 83.54 / 83.83★

A 52.72 58.80 60.64 63.78 - - - -

R 66.95 72.49 72.30 75.07 - - - -

★
We observe overfitting in the fine-tuning process, and therefore report both the last and the oracle results here.

for ResNet since it performs much worse than AdamW when optimizing other architectures (e.g.,

71.5% vs. 74.6% ImageNet accuracy reported in Chen et al. [9]). For evaluation, we report the results

on various benchmarks including the ImageNet-1K validation set, ImageNet ReaL [6], ImageNet

V2 [35], ImageNet A [17], and ImageNet R [16]. The image resolution is 224
2
by default if not

specified by the subscript in the model name.

Hyperparameter tuning. For a fair comparison, we only tune the peak learning rate 𝑙𝑟 and weight

decay 𝜆 for both AdamW and our Hero-Lion in the log scale, i.e., 𝑙𝑟 ∈ {1𝑒−4, 3𝑒−4, 1𝑒−3, 3𝑒−3, ...},
𝜆 ∈ {0.1, 0.3, 1.0, 3, 0, ...}. Other hyperparameters are fixed throughout the paper, e.g., 𝛽1 = 0.9,

𝛽2 = 0.999 for AdamW and 𝛽1 = 0.9, 𝛽2 = 0.99 for Hero-Lion. Please see Table 5 (in the appendix)

for the detailed settings.

3.1 Main Results

Train from scratch on ImageNet-1K. Following previous works [11, 12, 41], we train all models

except ResNet for 300 epochs with 4,096 batch size. For ResNet-50, we use batch size 1,024 and

train it for 90 epochs. The learning rate schedules are cosine decay with 10K steps warmup.

As shown in Table 2, Hero-Lion significantly outperforms AdamW on various architectures.

Empirically, the improvement enlarges on models with larger capacity. For instance, 1.96% vs. 0.58%

accuracy increase for ViT-B/16 and ViT-S/16, respectively. Besides, the gap tends to become larger
with fewer inductive biases inserted. When augmentations, i.e, RandAugment [10] and Mixup [48],

are already applied (to encourage translation, rotation equivalence, etc.), the gain of Hero-Lion

over AdamW is reduced. But still, our optimizer outperforms AdamW for 0.42% when training

CoAtNet-3, although a strong regularization is included in the training recipe [11] (RandAugment

with two layers and magnitude 15, Mixup of 0.8, and stochastic depth [18] of 0.7).

Pre-train on ImageNet-21K. We pre-train ViT-B/16 and ViT-L/16 on ImageNet-21K for 90 epochs

with 4,096 batch size, resulting in a total of ∼280K steps. The fine-tuning settings are the same

as Dosovitskiy et al. [12]: momentum SGD with 20K steps and batch size 512.

Table 2 shows that Hero-Lion still beats AdamW after the training set is enlarged for ∼10 times.

Their gaps on larger models are consistently bigger: +0.52% vs. +0.33% (ImageNet), +0.57% vs.

+0.23% (ReaL), and +0.74% vs. +0.25% (V2) for ViT-L/16 and ViT-B/16, respectively.

3



Table 2: Model performance on ImageNet, ImageNet ReaL, and ImageNet V2. All results are averaged

from three independent runs.

Model #Params Optimizer Augmentation
(RandAug + Mixup) ImageNet ReaL V2

Train from scratch on ImageNet-1K

ResNet-50 25.56M

SGD

%
76.22 82.39 63.93

AdamW 76.34 82.72 64.24
Hero-Lion 76.45 82.72 64.02

Mixer-S/16 18.53M

AdamW

%
69.26 75.71 55.01

Hero-Lion 69.92 76.19 55.75

Mixer-B/16 59.88M

AdamW

%
68.12 73.92 53.37

Hero-Lion 70.11 76.60 55.94

ViT-S/16 22.05M

AdamW

%
76.12 81.94 63.09

Hero-Lion 76.70 82.64 64.14

AdamW

!
76.97 83.35 64.59

Hero-Lion 77.49 83.68 65.31

ViT-B/16 86.57M

AdamW

%
75.48 80.64 61.87

Hero-Lion 77.44 82.57 64.81

AdamW

!
79.65 84.65 67.39

Hero-Lion 80.11 85.82 68.50

CoAtNet-1 42.23M

AdamW

!
83.64 - -

Hero-Lion 84.07 - -

CoAtNet-3 166.97M

AdamW

!
84.45 - -

Hero-Lion 84.87 - -

Pre-train on ImageNet-21K

ViT-B/16384 86.86M

AdamW

%
84.12 88.61 73.81

Hero-Lion 84.45 88.84 74.06

ViT-L/16384 304.72M

AdamW

%
85.07 88.78 75.10

Hero-Lion 85.59 89.35 75.84

Pre-train on JFT. To push the limit of Hero-Lion, we perform extensive experiments based on

the JFT [39] dataset. We follow the settings of Dosovitskiy et al. [12] and Zhai et al. [46] for

both pre-training and fine-tuning. Figure 1 shows the fine-tuning accuracy under different pre-

training budgets spanning three scales of ViT (ViT-B/16, ViT-L/16, and ViT-H/14) on JFT-300M.

Our optimizer enables the ViT-L/16 to match the performance of ViT-H/14 trained by AdamW on

ImageNet and ImageNet V2 but with ∼3x less pre-training cost. On ImageNet ReaL, the compute

saving increases to ∼5x: ViT-L/16 pre-trained for 7 epochs (∼500K steps) by Hero-Lion surpasses

the ViT-H/14 pre-trained for 14 epochs (∼1M steps) by AdamW. Another evidence is that Zhai et al.

[46] pre-train ViT-L/16 for ∼4M steps to achieve the accuracy of 88.0% (ImageNet), 90.3% (ReaL)

and 79.5% (V2), underperforming the same model with ∼4x fewer steps by Hero-Lion.

We further fine-tune with higher resolution and Polyak averaging [31] in Table 1. Our obtained

ViT-L/16 achieves a 0.78% accuracy gain on ImageNet compared to the AdamW trained counterpart

and matches the previous ViT-H/14 results. The gap between Hero-Lion and AdamW is larger

on more challenging benchmarks (mainly for real-world robustness): +1.33% (V2), +6.08% (A),

+5.54% (R) for ViT-L/16 and +1.12% (V2), +3.14% (A), +2.77% (R) for ViT-H/14, revealing its superior

generalization performance. After scaling up the pre-training dataset to JFT-3B, the obtained

ViT-g/14 beats the previous ViT-G/14 results [46] with ∼2x fewer parameters and GFLOPs, and our

ViT-G/14 achieves a 90.71% ImageNet accuracy.

Pre-train on Image-Text Dataset. To demonstrate the potential and effectiveness of Hero-Lion

in other domains, we pre-train a series of multi-modal Transformers on the in-house image-text

dataset introduced in LiT [47]. We control the seen image-text pairs as 1B
‡
, and the locked ViT

(pre-trained on JFT-3B) are exactly the same for Hero-Lion and AdafactorW [36]. The model name

‡
We use 1B settings that is much fewer than the 18B seen image-text pairs in the LiT paper for a faster comparison.

4



Table 3: Zero-shot accuracies (%) on ImageNet, CIFAR-100, and Oxford-IIIT Pet. Every model sees 1B

image-text pairs.

Model Optimizer ImageNet CIFAR-100 Pet

LiT-B/32-B

AdafactorW 68.78 71.41 86.62

Hero-Lion 69.88 71.78 87.36

LiT-B/16-B

AdafactorW 74.26 72.25 89.83

Hero-Lion 75.39 72.49 91.20

LiT-g/14288-L

AdafactorW 83.43 80.93 94.88

Hero-Lion 84.09 81.43 95.86

in Table 3 specifies the size, e.g., LiT-B/16-B denotes using ViT-B/16 as the image encoder and

BERT-base as the text encoder.

In LiT [47], the pre-trained image encoder is frozen so only the text encoder is optimized in a

contrastive manner. Surprisingly, Hero-Lion still achieves significant performance gain although it

is searched based on a pure vision model. As shown in Table 3, we improve the ImageNet zero-shot

accuracies of LiT-B/32-B, LiT-B/16-B, and LiT-g/14-L for 1.10%, 1.13%, and 0.66% respectively. Our

performance gain is consistent on CIFAR-100 and Oxford-IIIT Pet.

3.2 Ablation Study

A previous work [5] proposes the signSGD optimizer (and its momentum variant) to alleviate

the communication bottleneck under the distributed training settings, although showing inferior

accuracy on ImageNet. To ablate the effect of 𝛽1 and 𝛽2 in Hero-Lion, we compare with a simple

update rule similar to the one proposed in the previous work: m = interpolate(g, m, 0.9);
update = sign(m). As shown in Figure 2 (left), the ablated optimizer performs in-between AdamW

and Hero-Lion, but its convergence speed is slower as the accuracy catches up at the last stage. We

further use it to pre-train a ViT-B/16 on JFT-300M and achieve an ImageNet accuracy of 84.39%,

compared to 84.24% by AdamW and 84.72% by Hero-Lion (see Table 4 in the appendix). Those

results validate the necessity of using two interpolate functions in Hero-Lion.

4 Related Work

Our work lies in the area of AutoML that includes learning to learn [1, 3, 28, 32, 43, 44, 45], neural

architecture search [7, 8, 25, 29, 30, 33, 38, 42, 51], and hyperparameter optimization [4, 19, 20, 24,

37, 40], etc. Our work builds upon on a symbolic search space similar to AutoML-Zero [34] but

aims at discovering optimizers that can be applied to challenging vision benchmarks. Other related

works are efforts on handcrafted optimizers [5, 13, 15, 22, 27, 36, 49].

5 Conclusion

This paper proposes to automatically discover optimizers via evolutionary search. We represent

optimizers by programs consisting of basic mathematical operations, and warm start the population

by AdamW. Our discovered optimizer Hero-Lion only tracks the momentum and applies the sign op-

eration to calculate the update to the weights, halving the memory consumption of AdamW. Despite

its simplicity, Hero-Lion achieves extraordinary generalization across architectures, datasets and

tasks. We leave the detailed search method and results in other domains to a more comprehensive

version in the future.

6 Limitations and Broader Impact Statement

This paper is limited in the vision (and vision-language) domain, and we have not tried some

self-supervision settings such as contrastive learning and masked image modeling. Potential social

impacts include reducing the compute thus the energy cost required to train giant models.

5



7 Reproducibility Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In Section 6.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [No] We provide detailed hyperparameter settings in the appendix,

and we will release the code in the future.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] In Section 3.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [No] We

provide raw results for the figure in the appendix.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [N/A]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] In Section 3 and the appendix.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] We make fair comparisons between AdamW and our

optimizer.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] In Section 3.2.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] We

exactly follow the previous metrics and fine-tuning settings.

(i) Did you compare performance over time? [Yes] Figure 2 (left) shows the ImageNet accuracy

vs. training steps.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] All

results are an average of three independent runs.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [No] The variance is pretty small compared to the gap between AdamW

and our optimizer.

6

https://automl.cc/ethics-accessibility/


(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We evaluate

on multiple benchmarks including ImageNet-1K, ImageNet ReaL, ImageNet V2, ImageNet

A, and ImageNet R.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] In Section 3 and the appendix.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes] In Section 3, we tune the peak learning

rate and the weigt decay in the log scale.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [No] All datasets are publicly available except

the JFT and the image-text pairs dataset.

(c) Did you include any new assets either in the supplemental material or as a url? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

Acknowledgements. We would like to thank Xiaohua Zhai, Zihang Dai, Hanxiao Liu, Hieu Pham,

and Boqing Gong for helpful discussions; the Google Brain team at large for providing a supportive

research environment.

References

[1] Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W Hoffman, David Pfau, Tom

Schaul, Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent

by gradient descent. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[2] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of

stochastic gradients. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 404–413. PMLR, 10–15 Jul 2018.

[3] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. Neural optimizer search with

reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, page 459–468. JMLR.org, 2017.

7



[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-

parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Wein-

berger, editors, Advances in Neural Information Processing Systems, volume 24. Curran Asso-

ciates, Inc., 2011.

[5] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.

signSGD: Compressed optimisation for non-convex problems. In Jennifer Dy and Andreas

Krause, editors, Proceedings of the 35th International Conference onMachine Learning, volume 80

of Proceedings of Machine Learning Research, pages 560–569. PMLR, 10–15 Jul 2018.

[6] Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord.

Are we done with imagenet?, 2020.

[7] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via

perturbation-based regularization. In Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 1554–1565. PMLR, 13–18 Jul 2020.

[8] Xiangning Chen, RuochenWang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. DrNAS:

Dirichlet neural architecture search. In International Conference on Learning Representations,
2021.

[9] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform

resnets without pre-training or strong data augmentations. In International Conference on
Learning Representations, 2022.

[10] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated

data augmentation with a reduced search space. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.

Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,

pages 18613–18624. Curran Associates, Inc., 2020.

[11] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution

and attention for all data sizes. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and

J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,

pages 3965–3977. Curran Associates, Inc., 2021.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image

recognition at scale. In International Conference on Learning Representations, 2021.

[13] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

[14] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware

minimization for efficiently improving generalization. In International Conference on Learning
Representations, 2021.

[15] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor

optimization. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
1842–1850. PMLR, 10–15 Jul 2018.

8



[16] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,

Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin

Gilmer. The many faces of robustness: A critical analysis of out-of-distribution generalization.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
8340–8349, October 2021.

[17] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural

adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 15262–15271, June 2021.

[18] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with

stochastic depth. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer
Vision – ECCV 2016, pages 646–661, Cham, 2016. Springer International Publishing.

[19] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization

for general algorithm configuration. In Carlos A. Coello Coello, editor, Learning and Intelligent
Optimization, pages 507–523, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[20] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperpa-

rameter optimization. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the
19th International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings
of Machine Learning Research, pages 240–248, Cadiz, Spain, 09–11 May 2016. PMLR.

[21] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping

Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp

minima. In International Conference on Learning Representations, 2017.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[23] Ke Li and Jitendra Malik. Learning to optimize. In International Conference on Learning
Representations, 2017.

[24] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-

band: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res.,
18(1):6765–6816, jan 2017. ISSN 1532-4435.

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.

In International Conference on Learning Representations, 2019.

[26] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and

Jiawei Han. On the variance of the adaptive learning rate and beyond. In International
Conference on Learning Representations, 2020.

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[28] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.

Understanding and correcting pathologies in the training of learned optimizers. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 4556–4565.
PMLR, 09–15 Jun 2019.

9



[29] Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Gabriel Bender, Hanxiao

Liu, Adam Kraft, Chen Liang, and Quoc Le. Pyglove: Symbolic programming for automated

machine learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, edi-

tors, Advances in Neural Information Processing Systems, volume 33, pages 96–108. Curran

Associates, Inc., 2020.

[30] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture

search via parameters sharing. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 4095–4104. PMLR, 10–15 Jul 2018.

[31] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
J. Control Optim., 30(4):838–855, jul 1992. ISSN 0363-0129. doi: 10.1137/0330046.

[32] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Interna-
tional Conference on Learning Representations, 2017.

[33] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image

classifier architecture search. Proceedings of the AAAI Conference on Artificial Intelligence, 33
(01):4780–4789, Jul. 2019. doi: 10.1609/aaai.v33i01.33014780.

[34] Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: Evolving machine learning

algorithms from scratch. In International Conference on Machine Learning, pages 8007–8019.
PMLR, 2020.

[35] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet

classifiers generalize to ImageNet? In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 5389–5400. PMLR, 09–15 Jun 2019.

[36] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory

cost. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
4596–4604. PMLR, 10–15 Jul 2018.

[37] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine

learning algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.Weinberger, editors,Advances
in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[38] David So, Quoc Le, and Chen Liang. The evolved transformer. In International Conference on
Machine Learning, pages 5877–5886. PMLR, 2019.

[39] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable

effectiveness of data in deep learning era. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Oct 2017.

[40] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: Com-

bined selection and hyperparameter optimization of classification algorithms. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’13, page 847–855, New York, NY, USA, 2013. Association for Computing Machinery.

ISBN 9781450321747. doi: 10.1145/2487575.2487629.

10



[41] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas

Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,

and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In M. Ranzato,

A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 24261–24272. Curran Associates, Inc., 2021.

[42] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Re-

thinking architecture selection in differentiable NAS. In International Conference on Learning
Representations, 2021.

[43] Olga Wichrowska, Niru Maheswaranathan, MatthewW. Hoffman, Sergio Gómez Colmenarejo,

Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and

generalize. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, page 3751–3760. JMLR.org, 2017.

[44] Yuanhao Xiong, Li-Cheng Lan, Xiangning Chen, Ruochen Wang, and Cho-Jui Hsieh. Learning

to schedule learning rate with graph neural networks. In International Conference on Learning
Representations, 2022.

[45] Zhen Xu, Andrew M. Dai, Jonas Kemp, and Luke Metz. Learning an adaptive learning rate

schedule, 2019.

[46] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision trans-

formers, 2021.

[47] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander

Kolesnikov, and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 18123–18133, June 2022.

[48] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond

empirical risk minimization. In International Conference on Learning Representations, 2018.

[49] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon

Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in

observed gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,

Advances in Neural Information Processing Systems, volume 33, pages 18795–18806. Curran

Associates, Inc., 2020.

[50] Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek,

sekhar tatikonda, James s Duncan, and Ting Liu. Surrogate gap minimization improves

sharpness-aware training. In International Conference on Learning Representations, 2022.

[51] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In

International Conference on Learning Representations (ICLR), 2017.

11



Table 4: Model performance when pre-trained on JFT-300 datasets. Those numbers correspond to

Figure 1 in the main text. The fine-tuning resolution is 384
2
for ViT-B/16 and ViT-L/16, and

392
2
for ViT-H/14. Following Dosovitskiy et al. [12], Polyak averaging is not applied here.

Model #Params Epochs / Steps Optimizer ImageNet ReaL V2 A R

ViT-B/16384 86.86M 7 / 517,791

AdamW 84.24 89.04 74.89 27.39 53.71

Hero-Lion 84.72 89.14 75.83 29.65 55.86

ViT-L/16384 304.72M

7 / 517,791

AdamW 86.69 89.95 78.03 40.55 64.47

Hero-Lion 87.32 90.43 79.29 47.13 68.49

14 / 1,035,583

AdamW 87.29 90.11 78.91 42.56 64.34

Hero-Lion 88.09 90.62 80.48 51.55 70.72

ViT-H/14392 632.72M 14 / 1,035,583

AdamW 88.02 90.27 80.10 53.14 69.48

Hero-Lion 88.78 90.68 81.41 58.21 73.09

A Detailed Algorithms

We manually include a bias correction term in Hero-Lion and show the full version in Algorithm 2,

where 𝜃𝑡 is the models weights at step 𝑡 , 𝜆 is the weight decay factor, 𝜂 is the learning rate scheduler

and 𝜂𝑡 denotes the learning rate at step 𝑡 , 𝑓 is the target function to optimize. Empirically, the bias

correction has minor effects for both AdamW and Hero-Lion.

Algorithm 1 AdamW Optimizer

given 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10
−8
, 𝜆, 𝜂,

𝑓

initialize 𝜃0,𝑚0 ← 0, 𝑣0 ← 0, 𝑡 ← 0

while 𝜃𝑡 not converged do
𝑡 ← 𝑡 + 1
𝑔𝑡 ← ∇𝜃 𝑓 (𝜃𝑡−1)
Update EMA of 𝑔𝑡 and 𝑔2𝑡
𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡
𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡
Bias Correction
�̂�𝑡 ←𝑚𝑡/(1 − 𝛽𝑡1)
𝑣𝑡 ← 𝑣𝑡/(1 − 𝛽𝑡2)
Update
𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡 (�̂�𝑡/(

√
𝑣𝑡 + 𝜖) + 𝜆𝜃𝑡−1)

end while
return 𝜃𝑡

Algorithm 2 Hero-Lion Optimizer (ours)

given 𝛽1 = 0.9, 𝛽2 = 0.99, 𝜆, 𝜂, 𝑓

initialize 𝜃0,𝑚0 ← 0, 𝑡 ← 0

while 𝜃𝑡 not converged do
𝑡 ← 𝑡 + 1
𝑔𝑡 ← ∇𝜃 𝑓 (𝜃𝑡−1)
Bias Correction
�̂�𝑡−1 ←𝑚𝑡−1/(1 − 1𝑡>1𝛽𝑡−12

)
Update
�̂�𝑡 ← 𝛽1�̂�𝑡−1 + (1 − 𝛽1)𝑔𝑡
𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡 (sign(�̂�𝑡 ) + 𝜆𝜃𝑡−1)
Update EMA of 𝑔𝑡
𝑚𝑡 ← 𝛽2𝑚𝑡−1 + (1 − 𝛽2)𝑔𝑡

end while
return 𝜃𝑡

B Hyperparameters

Hyperparameter settings are shown in Table 5, where 𝑙𝑟 denotes the peak learning rate, 𝜆 denotes

the weight decay factor. The effective weight decay 𝑙𝑟 ∗ 𝜆 that actually applies to the weights

is similar for AdamW and Hero-Lion. We fix all other hyperparameters in the optimizers, e.g.,

𝛽1 = 0.9, 𝛽2 = 0.999 for AdamW, 𝛽1 = 0.9, 𝛽2 = 0.99 for Hero-Lion. The fine-tuning settings are

exactly the same as the original ViT [12, 46] and CoAtNet [11] paper. We use TPU V3 and V4 for

all the experiments.

12



Table 5: Hyperparameter settings for the experiments. The effective weight decay 𝑙𝑟 ∗ 𝜆 is similar for

AdamW and Hero-Lion.

Model Dropout Stoch Depth Augmentations Optimizer 𝑙𝑟 𝜆

Train from scratch on ImageNet-1K

ResNet-50 - - -

AdamW 3𝑒 − 3 0.1

Hero-Lion 3𝑒 − 4 1.0

Mixer-S/16 - 0.1 -

AdamW 1𝑒 − 2 0.3

Hero-Lion 3𝑒 − 3 1.0

Mixer-B/16 - 0.1 -

AdamW 1𝑒 − 2 0.3

Hero-Lion 3𝑒 − 3 3.0

ViT-S/16 0.1 0.1

-

AdamW 1𝑒 − 2 0.1

Hero-Lion 1𝑒 − 3 1.0

RandAug: 2, 10

Mixup: 0.2

AdamW 3𝑒 − 3 0.1

Hero-Lion 3𝑒 − 4 0.3

ViT-B/16 0.1 0.1

-

AdamW 3𝑒 − 3 0.3

Hero-Lion 1𝑒 − 3 1.0

RandAug: 2, 15

Mixup: 0.5

AdamW 1𝑒 − 3 0.1

Hero-Lion 3𝑒 − 4 1.0

CoAtNet-1 - 0.3

RandAug: 2, 15

Mixup: 0.8

AdamW 1𝑒 − 3 0.05

Hero-Lion 2𝑒 − 4 1.0

CoAtNet-3 - 0.7

RandAug: 2, 15

Mixup: 0.8

AdamW 1𝑒 − 3 0.05

Hero-Lion 2𝑒 − 4 1.0

Pre-train on ImageNet-21K

ViT-B/16 0.1 0.1 -

AdamW 1𝑒 − 3 0.1

Hero-Lion 1𝑒 − 4 0.3

ViT-L/16 0.1 0.1 -

AdamW 1𝑒 − 3 0.3

Hero-Lion 1𝑒 − 4 1.0

Pre-train on JFT-300M

ViT-B/16 - - -

AdamW 6𝑒 − 4 0.1

Hero-Lion 1𝑒 − 4 0.3

ViT-L/16 - - -

AdamW 3𝑒 − 4 0.1

Hero-Lion 1𝑒 − 4 0.3

ViT-H/14 - - -

AdamW 3𝑒 − 4 0.1

Hero-Lion 3𝑒 − 5 0.3

Pre-train on JFT-3B

ViT-g/14 & ViT-G/14 - - -

AdafactorW 8𝑒 − 4 0.03

Hero-Lion 3𝑒 − 5 0.3

Table 6: Training error 𝐿𝑡𝑟𝑎𝑖𝑛 and landscape flatness 𝐿N𝑡𝑟𝑎𝑖𝑛 of ViT-B/16.

Optimizer AdamW Hero-Lion

ImageNet 75.48 77.44

ReaL 80.64 82.57

V2 61.87 64.81

𝐿𝑡𝑟𝑎𝑖𝑛 0.61 0.75

𝐿N𝑡𝑟𝑎𝑖𝑛 3.74 1.37

13



Figure 2: Left: Ablation for 𝛽1 and 𝛽2 in Hero-Lion. ImageNet accuracy (%) of ViT-B/16 when we vary

𝑙𝑟 and 𝜆 for AdamW (Middle) and our Hero-Lion (Right).

C Sensitivity to Hyperparameters

Apart from the generalization ability, the sensitivity to hyperparameters is also critical for the

adoption of an optimizer in practice. Compared to AdamW, Hero-Lion does not need the hyper-

parameter 𝜖 for numerical stability. In Figure 2 (middle and right), we alter both 𝑙𝑟 and 𝜆 when

training ViT-B/16 from scratch on ImageNet. As shown by the heatmaps, Hero-Lion is more robust

to different hyperparameter choices compared to AdamW, benefiting its practical usage.

D Analysis of Loss Landscape

In this section, we try to understand the reason why our Hero-Lion optimizer achieves better

generalization than AdamW from the lens of loss geometry. The convergence to a smooth landscape

has been shown to benefit the generalization of deep neural networks [9, 14, 21, 50]. Following Chen

et al. [9], wemeasure the landscape flatness at convergence by 𝐿N𝑡𝑟𝑎𝑖𝑛 = E𝜖∼N [𝐿𝑡𝑟𝑎𝑖𝑛 (𝑤+𝜖)] (average
over 1,000 random noises) in Table 6. We observe that the ViT-B/16 trained by AdamW enjoys a

smaller training error 𝐿𝑡𝑟𝑎𝑖𝑛 . However, Hero-Lion can enable ViT to converge to flatter regions, as

it helps the model retain comparably lower error against Gaussian perturbations.

14


	Introduction
	Method
	Evaluation
	Main Results
	Ablation Study

	Related Work
	Conclusion
	Limitations and Broader Impact Statement
	Reproducibility Checklist
	Detailed Algorithms
	Hyperparameters
	Sensitivity to Hyperparameters
	Analysis of Loss Landscape

