
DHA: End-to-End Joint Optimization of Data Augmentation
Policy, Hyper-parameter and Architecture

Kaichen Zhou1 Lanqing Hong2 Shoukang Hu3 Fengwei Zhou2 Binxin Ru1 Jiashi Feng4
Zhenguo Li2

1University of Oxford
2Huawei Noah’s Ark Lab
3The Chinese University of Hong Kong
4National University of Singapore

Abstract Automated machine learning (AutoML) usually involves several crucial components, such as
Data Augmentation (DA) policy, Hyper-Parameter Optimization (HPO), and Neural Archi-
tecture Search (NAS). However joint optimization of these components remains challenging
due to the largely increased search dimension and the variant input types of each component.
In parallel to this, the common practice of searching for the optimal architecture �rst and
then retraining it before deployment in NAS often su�ers from low performance correlation
between the search and retraining stages. An end-to-end solution that integrates the Au-
toML components and returns a ready-to-use model at the end of the search is desirable. In
view of these, we propose DHA, which achieves joint optimization of Data augmentation
policy, Hyper-parameter and Architecture. Speci�cally, end-to-end NAS is achieved in a
di�erentiable manner by optimizing a compressed lower-dimensional feature space, while
DA policy and HPO are updated dynamically at the same time.

1 Introduction
While deep learning has achieved remarkable progress in various tasks such as computer vision and
natural language processing, the design and training of a well-performing deep neural architecture
for a speci�c task usually requires tremendous human involvement He et al. (2016); Sandler et al.
(2018). To alleviate such burden on human users, AutoML algorithms have been proposed in
recent years to automate the pipeline of designing and training a model, such as automated Data
Augmentation (DA), Hyper-Parameter Optimization (HPO), and Neural Architecture Search (NAS)
Cubuk et al. (2018); Mittal et al. (2020); Chen et al. (2019).) All of these AutoML components are
normally processed independently and the naive solution of applying them sequentially in separate
stages, not only su�ers from low e�ciency but also leads to sub-optimal results Dai et al. (2020);
Dong et al. (2020). Indeed, how to achieve full-pipeline “from data to model” automation e�ciently
and e�ectively is still a challenging and open problem.

One of the main di�culties lies in understanding how to automatically combine the di�erent
AutoML components (e.g., NAS and HPO) appropriately without human expertise. Another main
challenge of achieving the automated pipeline “from data to model" is understanding how to
perform end-to-end searching and training of models without the need of parameter retraining.
Current approaches, even those considering only one AutoML component such as NAS algorithms,
usually require two stages, one for searching and one for retraining Liu et al. (2019); Xie et al. (2019).

Targeting the challenging task-speci�c end-to-end AutoML, we propose DHA, a di�erentiable
joint optimization solution for e�cient end-to-end AutoML components, including the DA, HPO and
NAS. In DHA, the optimization strategyweight-sharing Xie et al. (2020) is delicately adopted in DA,
HPO and NAS by respectively introducing the probability matrix, the continuous hyper-parameter
setting and the super-network. Speci�cally, the DA and HPO are regarded as dynamic schedulers,

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:kc.zhou2020@hotmail.com
mailto:honglanqing@huawei.com
mailto:shoukang.hu@gmail.com
mailto:%20zhoufengwei@huawei.com
mailto:robin@robots.ox.ac.uk
mailto:jshfeng@gmail.com
mailto:li.zhenguo@huawei.com
https://creativecommons.org/licenses/by/4.0/

Augmented
Mini-batch

⋮

Mini-batch

Sample
Transformation 𝑇~𝝉

⋮

⋮
Optimizer

Sample Architecture
𝐴~𝜶

Training Loss
with 𝜽

Update Augment
Parameters 𝝉 Update

Architecture
Parameters 𝜶

Update Network Parameters 𝜽

Update Hyper-
parameters 𝜼

Augment
Probability

Matrix
Super

Network

Child Network

Training Loss
with 𝜽𝑡+1

forward backward

End-to-end NAS with manually designed 𝜼 End-to-end NAS with manually designed 𝝉DHA
Figure 1: An overview of DHA. We �rst sample the DA operations for each sample based on the data

transformation parameters ⌧ . Then, a child network is sampled based on the architecture
parameters ↵, which will be used to process the transformed mini-batch. Training loss
is calculated to update ⌧ , ↵, and ✓. Finaly, the training loss based on updated networks’
weights ✓C+1 is used to update hyper-parameters ⌘.

which adapt themselves to the update of network parameters and network architecture. At the same
time, the end-to-end NAS optimization is realized in a di�erentiable manner with the help of sparse
coding method. Instead of performing our search in a high-dimensional network architecture space,
we optimize a compressed lower-dimensional feature space. With this di�erentiable manner, DHA
can e�ectively deal with the huge search space and the high optimization complexity caused by
the joint optimization problem.

2 Methodology

Consider a dataset D = {(G8 ,~8)}#8=1, where # is the size of this dataset, and ~8 is the label of the
input sample G8 . We aim to train a neural network 5 (·), which can achieve the best accuracy
on the test dataset DC4BC . Multiple AutoML components are considered, including DA, HPO, and
NAS. Let ⌧ , ⌘, ↵, and ✓ represent the data augmentation parameters, the hyper-parameters, the
architecture parameters, and the objective neural network parameters, respectively. This problem
can be formulated as

0A6<8=⌧ ,⌘,↵,✓L(⌧ ,⌘,↵, ✓;D)
B .C . 28 (↵) ⇠8 , 8 = 1, ...,W,

(1)

where L(·) represents the loss function, D denotes the input data, 28 (·) refers to the resource cost
(e.g., storage or computation cost) of the current architecture U , which is restricted by the 8-th
resource constraints ⇠8 , and W denotes the total number of resource constraints. Considering the
huge search space, it is challenging to achieve the joint optimization of ⌧ , ⌘, ↵, and ✓ within
one-stage without parameter retraining. In this work, we propose to use the di�erentiable method
to provide a computationally e�cient solution. See Fig. 1 for an illustration.

2.1 Data augmentation parameters

For every mini-batch of training data BCA = {(G: ,~:)}=
CA

:=1, we conduct data augmentation to
increase the diversity of the training data. For C-th iteration, we sample =CA transformations

2

according to data augmentation parameter ⌧ C to generate the corresponding augmented samples
in the batch. Given a sampled architecture, the loss function for each augmented sample is denoted
by LCA (5 (↵C , ✓C ; T: (G:))), where T: represents the selected transformation. In order to relax ⌧ to
be di�erentiable, we regard ?: (⌧ C), the probability as an importance weight for the loss function.
The objective of data augmentation is to minimize the following loss function:

L⇡� (⌧ C) = �
=CA’
:=1

?: (⌧ C)LCA (5 (↵C , ✓C ; T: (G:))). (2)

In this way, DHA aims to increase the probability of those transformations with high training loss.

2.2 Hyper-parameters
At the training stage, we alternatively update ✓ and ⌘. In C-th iteration, we can update ✓C based on
the gradient of the unweighted training loss LCA (5 (↵C , ✓C ;BCA)) = 1

=CA
Õ=CA

:=1 L
CA (5 (↵C , ✓C ; T: (G:))),

which can be written as ✓C+1 = OP(✓C ,⌘C ,r✓LCA (5 (↵C , ✓C ;BCA))), where OP(·) is the optimizer. To
update the hyper-parameters ⌘, we regard ✓C+1 as a function of ⌘ and compute the training loss
LCA (5 (↵C , ✓C+1(⌘C);BCA)) with network parameters ✓C+1(⌘C) on a mini-batch of training data BCA .
Then, ⌘C is updated with r⌘LCA (5 (↵C , ✓C+1(⌘C);BCA)) by:

⌘C+1 = ⌘C � Vr⌘LCA (5 (↵C , ✓C+1(⌘C);BCA)), (3)

where V is a learning rate. Even ✓C can also be deployed to ✓C�1 whose calculation also involves
⌘C�1, we take an approximation method and regard ✓C here as a variable independent of ⌘C�1.

2.3 Architecture parameters
Following Liu et al. (2019), we denote the each space as a single directed acyclic graph (DAG),
where the probability matrix ↵ consists of vector ↵)

8, 9 = [U1
8, 9 , ...,U

A
8, 9 , ...,U

:
8, 9] and UA8, 9 represents the

probability of choosing A C⌘ operation associated with the edge (8, 9). Instead of directly optimizing
↵ 2 R= , we adopt ISTA-NAS to optimize its compressed representation 1 2 R< where< << =,
which can be written as 1 = �↵ + n, where n 2 R< represents the noise and � 2 R<⇥= is the
measurement matrix which is randomly initialized. ↵ is optimized by using iterative shrinkage
thresholding algorithm Daubechies et al. (2004), which can be written as:

↵C+1 = [_/! (↵C � 1
!
�) (�↵ � 1)), C = 0, 1, ..., (4)

where ! represents the LASSO formulation which can be written as<8=
↵

1
2 | |�↵ � 1 | |22 + _ | |↵| |1;

the _ represents the regularization parameters and the [_/! is the shrinkage operator as de�ned
in Beck and Teboulle (2009). Thus we have ↵)

9 o9 = (1)9 � 9 � [↵9 (1 9)])⇢ 9)> 9 , where > 9 refer to all
possible operations connected to note 9 and ⇢ 9 = �)

9 � 9 � � . With this relaxation, 1 can be optimized
through calculating the gradient concerning training loss.

2.4 Joint-optimization
Based on the above analysis of each AutoML module, DHA realizes end-to-end joint optimization of
automated data augmentation parameters ⌧ , hyper-parameters ⌘, and architecture parameters ↵.
The main reason that DHA could optimize large-scale search space in an e�ective manner, is that
DHA delicately adopt weight-sharing in the joint-optimization for di�erent parameters. Instead
of only optimizing a sub-network with a DA strategy and a hyper-parameter setting to check
the performance of certain setting, we realize the joint-optimization with the help of a super-net
network, a DA probability matrix and continuous hyper-parameter setting. In that way, DHA can
make use of previous trained parameter weights to check the performance setting, which largely
decreases the computational request.

3

3 Experiments

3.1 Experiment setting

Datasets. Following Ru et al. (2020), we conducted experiments on various datasets, including
CIFAR10, CIFAR100, SPORT8, MIT67 and IMAGNET for the object classi�cation task Krizhevsky
et al. (2009); Li and Fei-Fei (2007); Quattoni and Torralba (2009); Nilsback and Zisserman (2008).
Search space. (1) Automated DA. Following Ho et al. (2019), we consider 14 di�erent operations
for data augmentation, such as AutoContrast and Equalize. The magnitude of each operation is
randomly sampled from the uniform distribution. (2) NAS. Following Liu et al. (2019) and Cai et al.
(2019), we consider both the cell-based and the MobileNet search space, which regards the whole
architecture as a stack similar cells. (3) HPO.We consider both the L2 regularization (i.e., weight
decay) and the learning rate in the experiments.
Baselines. We compare DHAwith various AutoML algorithms (see Table 1). To further demonstrate
the bene�ts of joint optimization of multiple AutoML components, we also include a baseline,
Sequential DHA, which resembles the common practice by human to optimize di�erent components
in sequence. Speci�cally, Sequential DHA consists of two stages. During the �rst stage, Sequential
DHA performs NAS to �nd the optimal architecture under certain hyper-parameter settings. In the
next stage, Sequential DHA performs the online DA and HPO strategy proposed in our paper and
trains the architecture derived from the �rst stage from scratch.

Table 1: Top-1 accuracy (%) and computational time (GPU hour) of di�erent AutoML algorithms on
CIFAR10, CIFAR100, SPORT8, MIT67 and IMAGNET with Cell-Based Search Space.

Model CIFAR10 CIFAR100 SPORT8 MIT67 IMAGNET
Acc Acc Acc Acc Acc

ENAS Pham et al. (2018) 95.85±0.17 78.02±0.55 94.54±0.35 71.05±0.29 -
NSGA-NET Lu et al. (2019) 96.18±0.37 77.31±0.14 92.53±0.34 70.20±0.41 -
DARTS Liu et al. (2019) 97.24±0.10 82.37±0.34 93.87±0.35 70.73±0.24 73.30

P-DARTS Chen et al. (2019) 97.13±0.07 82.46±0.37 92.45±0.66 70.70±0.29 75.30
MANAS Carlucci et al. (2019) 97.18±0.07 82.07±0.14 94.46±0.22 71.36±0.19 73.85

One-Stage ISTA Yang et al. (2020) 97.64±0.20 83.10±0.11 94.33±0.12 72.12±0.03 76.00
Sequential DHA 97.77±0.14 83.51±0.12 94.55±0.09 72.34±0.14 76.70

DHA 98.11±0.26 83.93±0.23 95.06±0.13 73.35±0.19 77.40

3.2 Results

As shown in Table 1, methods optimizing all of DA, HPO and NAS automatically (i.e, Sequential
DHA and DHA) consistently outperform those NAS algorithms with manual designed DA and HPO.
Speci�cally, DHA achieves SOTA results on all datasets. This shows the clear performance gain
of extending the search scope from architecture to including also data augmentation and hyper-
parameters, justifying the need for multi-component optimization in AutoML. Moreover, despite
optimising over a larger search space, DHA remains cost e�cient. For example, on CIFAR100, DHA
enjoys 1.56% higher test accuracy than DARTS but requires 42% less time. Besides, the comparison
between DHA and Sequential DHA reveals the evident advantage of doing DA, HPO and NAS
jointly over doing them separately in di�erent stages.

4 Conclusion
In this work, we present DHA, an end-to-end joint-optimization method for three important
components of AutoML, including DA, HPO and NAS. This di�erentiable joint-optimization method
can e�ciently optimize larger search space than previous AutoML methods and achieve SOTA
results on various datasets with a relatively low computation cost.

4

References

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202.

Cai, H., Zhu, L., and Han, S. (2019). Proxylessnas: Direct neural architecture search on target task
and hardware. In ICLR.

Carlucci, F. M., Esperança, P. M., Singh, M., Gabillon, V., Yang, A., Xu, H., Chen, Z., and Wang, J.
(2019). Manas: Multi-agent neural architecture search. arXiv preprint arXiv:1909.01051.

Chen, X., Xie, L., Wu, J., and Tian, Q. (2019). Progressive di�erentiable architecture search: Bridging
the depth gap between search and evaluation. In CVPR.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2018). Autoaugment: Learning
augmentation policies from data. arXiv preprint arXiv:1805.09501.

Dai, X., Wan, A., Zhang, P., Wu, B., He, Z., Wei, Z., Chen, K., Tian, Y., Yu, M., Vajda, P., et al. (2020).
FBNetV3: Joint architecture-recipe search using neural acquisition function. In CVPR.

Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics:
A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11):1413–1457.

Dong, X., Tan, M., Yu, A. W., Peng, D., Gabrys, B., and Le, Q. V. (2020). AutoHAS: Di�erentiable
hyper-parameter and architecture search. arXiv preprint arXiv:2006.03656.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In CVPR.

Ho, D., Liang, E., Chen, X., Stoica, I., and Abbeel, P. (2019). Population based augmentation: E�cient
learning of augmentation policy schedules. In ICML.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images. Tech
Report.

Li, H., Chaudhari, P., Yang, H., Lam, M., Ravichandran, A., Bhotika, R., and Soatto, S. (2020).
Rethinking the hyperparameters for �ne-tuning. arXiv preprint arXiv:2002.11770.

Li, L.-J. and Fei-Fei, L. (2007). What, where and who? classifying events by scene and object
recognition. In ICCV.

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Di�erentiable architecture search. In ICLR.

Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., and Banzhaf, W. (2019). Nsga-net:
neural architecture search using multi-objective genetic algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 419–427.

Mittal, G., Liu, C., Karianakis, N., Fragoso, V., Chen, M., and Fu, Y. (2020). HyperSTAR: Task-aware
hyperparameters for deep networks. In CVPR.

Nilsback, M.-E. and Zisserman, A. (2008). Automated �ower classi�cation over a large number of
classes. In Indian Conference on Computer Vision, Graphics & Image Processing.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). E�cient neural architecture search via
parameters sharing. In ICML.

7

Quattoni, A. and Torralba, A. (2009). Recognizing indoor scenes. In CVPR.

Ru, B., Esperanca, P., and Carlucci, F. (2020). Neural architecture generator optimization. In NeurIPS.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). MobilenetV2: Inverted
residuals and linear bottlenecks. In CVPR.

Tan, M. and Le, Q. (2019). E�cientNet: Rethinking model scaling for convolutional neural networks.
In ICML.

Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y., and Han, S. (2020). APQ: Joint search
for network architecture, pruning and quantization policy. In CVPR.

Xie, L., Chen, X., Bi, K., Wei, L., Xu, Y., Chen, Z., Wang, L., Xiao, A., Chang, J., Zhang, X., and Tian,
Q. (2020). Weight-sharing neural architecture search: A battle to shrink the optimization gap.
CoRR, abs/2008.01475.

Xie, S., Zheng, H., Liu, C., and Lin, L. (2019). SNAS: Stochastic neural architecture search. In ICLR.

Yang, Y., Li, H., You, S., Wang, F., Qian, C., and Lin, Z. (2020). Ista-nas: E�cient and consistent
neural architecture search by sparse coding. arXiv preprint arXiv:2010.06176.

Zela, A., Klein, A., Falkner, S., and Hutter, F. (2018). Towards automated deep learning: E�cient
joint neural architecture and hyperparameter search. arXiv preprint arXiv:1807.06906.

8

	Introduction
	Methodology
	Data augmentation parameters
	Hyper-parameters
	Architecture parameters
	Joint-optimization

	Experiments
	Experiment setting
	Results

	Conclusion
	Limitations and Broader Impact Statement
	Appendix
	Experimental Settings
	Search Space
	Setting

	Details of Sequential DHA

