
Self-Optimizing Random Forests

Felix Mohr1

1
Universidad de La Sabana, Chía, Colombia

Abstract Random Forests (RFs) have become a standard pick of data scientists for classification and

regression tasks over the last two decades. Several modifications of RFs have been proposed

to eliminate the limitation of standard RFs to axis-aligned splits through the notion of

Oblique Random Forests (ORFs), which allow that splits are defined over linear combinations

of attributes rather than a single attribute. However, like there is no single best learner

for all supervised learning problems, there is also not a single best RF type. This paper

presents self-optimizing random forests (SORFs). SORFs incrementally create a forest by

growing different tree types and identifying the best tree type based on extrapolations of the

forest performance curves obtained from out-of-bag performance estimate. An exhaustive

empirical evaluation shows that SORFs consistently achieve the maximum performance

across three considered types of RFs while requiring only half the time for training all

these forests on average. At the same time, SORFs outperform standard RFs statistically

significantly and by at least 0.01 in accuracy on 25% of the considered datasets and even

substantially beyond 0.35 in two cases.

1 Introduction
Random Forests (RFs) (Breiman, 2001) have become a standard pick of data scientists for classifica-

tion and regression tasks over the last two decades. RFs are Bagging ensembles (Breiman, 1996) of

decision trees (Quinlan, 1997) in which the decision trees only have access to a random subset of

features in each inner node (Ho, 1998). The main strength of RFs is that they exhibit oftentimes

strong performance without the need of hyperparameter tuning.

Several modifications of RFs have been proposed to eliminate the limitation of standard RFs to

axis-aligned splits through the notion of Oblique Random Forests (ORFs). ORFs are RFs in which the

split is not defined over a single original feature but a linear combination thereof, which amounts

to an arbitrarily oriented hyperplane in the input space. ORFs were already discussed in Breiman’s

original work (Breiman, 2001), but optimizing the decision direction was, to my knowledge, first

considered by Lemmond et al. who used a Linear Discriminant Analysis (LDA) to identify the

split direction (Lemmond et al., 2008). Follow-up approaches considered a solution by regression

(Menze et al., 2011), the application of a (potentially kernelized) Principal Component Analysis

(PCA), (Zhang and Suganthan, 2014; Zhang et al., 2014; Wang et al., 2020) or even a combination of

PCA and LDA (Zhang and Suganthan, 2014). ORFs have a close connection to Rotation Forests

(Rodríguez et al., 2006), which compute the projection not in the inner leafs but previously once for

the whole tree. Thereby, Rotation Forests can be seen as one type of ORFs as well.

This paper introduces Self-Optimizing Random Forests (SORFs). The idea is to incrementally

create a forest by growing different tree types. Extrapolating the performance curves obtained from

the out-of-bag error of sub-forests of the different tree types, SORFs early detect the type of tree

that is most suitable for the dataset on which they are being trained. As soon as the performance

curve models have stabilized, the best tree type is picked, and only trees from this type are grown.

Here, the focus is on standard random trees, LDA-rotated trees, and PCA-rotated trees. Besides,

SORFs use this performance curve to automatically decide whether to add additional trees to the

forest. So SORFs do not require the number of trees as a hyperparameter, which makes them even

more straight forward to use than standard RFs.

AutoML Conference 2022 Workshop Track © 2022 the authors, released under CC BY 4.0

mailto:felix.mohr@unisabana.edu.co
https://creativecommons.org/licenses/by/4.0/

The experimental evaluation reveals that SORFs require substantially less time to be trained

compared to training three separate RFs in isolation and picking the best one. On 96 classification

datasets, SORFs present an average regret of only 0.001 in accuracy compared to the single best

forest type. At the same time, SORFs exhibit substantially lower runtime compared to evaluating

all of the three forest types separately, which would be the time required by an AutoML tool that

treat them as a black box. All the code for SORFs and the experiments is publicly available.
1

2 Background on Oblique Random Forests
Oblique RFs (ORFs) are a generalization of RFs that consist of decision trees in which the split

points are not necessarily axis-aligned. Formally, a split point is then not formulated as 𝑥 𝑗 ≤ 𝑐 ,

where 𝑥 𝑗 is the value of the 𝑗-th feature of some instance 𝑥 , but it is formulated over a projection
of the considered attributes to some line 𝛽 , i.e., 𝑥𝑇 𝛽 ≤ 𝑐 . ORFs have been introduced by Breiman

himself (Breiman, 2001) with random projections but received attention rather sporadically over

time (Lemmond et al., 2008; Menze et al., 2011; Zhang and Suganthan, 2014; Zhang et al., 2014;

Wang et al., 2020). A special type of ORF is a rotation forest (Rodríguez et al., 2006), in which the

projections are defined per tree and cannot vary among inner nodes.

A broadly applied technique is to define the split point through an implicit transformation

of the data via a Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA).

The PCA approach with a full rotation without projection is for example taken in (Zhang and

Suganthan, 2014). If desired, only a subset of the first 𝑘 principal components can be considered

for projection. An extreme case is taken in (Wang et al., 2020), which only consider the case of

𝑘 = 1 and hence project the data onto a line. An approach based on LDA projection is taken for

example in (Lemmond et al., 2008; Zhang and Suganthan, 2014). The potential advantage of LDA

over PCA is that LDA takes the instance labels into account whereas PCA does not and is hence

an uninformed transformation with respect to the prediction problem. In this paper, RFs of these

types, i.e., RFs that project the data in each inner node, are referred to as PCA RFs and LDA RFs

respectively.

To make projection-based RFs more stable and consistently superior to standard RFs, Zhang

et al. (Zhang and Suganthan, 2014) have introduced projection ensemble RFs (PERFs). This has

motivated the application of PERFs, which consider possibly several projections in addition to the

standard random space used by the standard RF. The term “ensemble” here stems from the fact that

an ensemble of projections (including no projection) is considered in each inner node. In (Zhang

and Suganthan, 2014), the authors consider the identity (no) projection, a PCA, and an LDA.

However, PERFs are not a good final answer to the question of rotations. While experimental

evaluations have shown that such projections, specifically LDA, oftentimes improve over standard

RFs, there are also some counter-examples in which results deteriorate. Besides, the training time

of PERFs is enormous corresponding to the one of training all forest types.

3 Self-Optimizing Random Forests
The core idea of Self-Optimizing Random Forests (SORFs) is to maintain different tree types and to

detect during training which of the tree types works best. At a high level, SORFs grow different sub-

forests, one for each tree type, and observe which of these forests evolves best. While growing the

forests, the performance of a forest is estimated using its out-of-bag performance. This technique is

a bit controversal, and a discussion is provided in Appendix B. Projecting the performance curves

obtained from the out-of-bag performance of each of these sub-forest with a performance curve

model, the best tree type is chosen as soon as the performance projection is stable for each of the

types. The chosen forest type is then grown until its performance curve plateaus or a predefined

maximum number of trees has been reached. Appendix B explains these steps in detail.

1https://github.com/fmohr/selfoptforests

2

https://github.com/fmohr/selfoptforests

The final forest will only contain the trees of the chosen type. That is, the trees grown for the

tree types not finally chosen are simply discarded. While it would be possible in principle to create

a mixed forest with different tree types, this paper abstains from this option to create a simple

baseline for then perhaps more sophisticated follow-up works. The same holds for other tree types

like kernel PCA trees etc.

The main difference to PERFs is that a PERFs make the rotation decision within each inner

node of each tree while SORFs commit to a rotation type once for all trees. That is, a single tree

in a PERF can contain several different rotation technique (one at each inner node). In contrast, a

single tree in a SORF can only contain one (or no) rotation technique, which is used in all of the
nodes. While several tree type exist during the training phase of a SORF, the final SORF model

will contain only trees of a single type, so that all split points in the whole forest are of the same

rotation type. SORFs are hence less flexible than PERFs in terms of the space of forests they can

build. Again, it is sensible conjecture that the performance of SORFs can be improved when mixing
different tree types, but the analysis in this paper is kept simple, and more sophisticated questions

are deferred to future work.

4 Experimental Evaluation
The analysis focuses on the question whether SORFs obtain the best performance of standard

RFs, PCA RFs, and LDA Rfs, and how much faster SORFs can be trained compared to training the

three RFs in isolation. To this end, a voting scheme of RFs was computed of the three tree types

for forest sizes between 1 and 100 each on 96 datasets, all of which are available at openml.org

(Vanschoren et al., 2013) for reproducibility. The 96 datasets are a mixture of datasets from the

AutoML benchmark (Gijsbers et al., 2019) and previous works on Oblique RFs (Zhang and Suganthan,

2014). For technical reasons, datasets of the AutoML benchmark with a sparse data representation

were excluded. Appendix A and B.4 describe the exact collection of datasets and RF configurations.

For every dataset, 20 random train/test splits of 80%/20% were created. From these voting

schemes, it is possible to recover the behavior of the three simple RFs (standard, LDA, PCA) as well

as the behavior of SORFs. This procedure not only saved computational resources but also allows

other researchers to reproduce the results without explicitly training the forests again. Even more,

it is possible to conduct a post-hoc analysis of other extrapolation techniques not tried for this

paper. All reported performances are summarized test-fold performances.

The first question is whether SORFs can consistently achieve the best performance among

all three forest types. To analyze this question, Fig. 1 shows the performance difference between

SORFs and each of the three RF types. The left plot compares the accuracy of SORFs (x-axis) against

the other three tree type RFs. Blue points show the comparison to LDA RFs, orange points to PCA

RFs, and green points to standard RFs. Every point is the average accuracy of the two compared

algorithms on a single dataset across the 20 train/test splits. Bullets show statistically significant

differences according to a Wilcoxon signed rank test (p-value 0.05), and circles show datasets on

which the difference is not significant in this sense. To give a different perspective on the same

data, the right plot summarizes the improvements in accuracy the SORF achieves over each of the

three individual forest types. For each of them, there is one boxplot summarzing the improvements

over all the datasets, and one only about those on which the mean value could be identified to be

statistically significantly different (same test as for left plot). Besides, there is one boxplot showing

the improvement over the “oracle”, which is effectively the regret of the SORF since the oracle

picks the best RF type and hence cannot be improved upon. Three vertical dotted lines serve as

visual aids for a deterioration of 0.01 (red line), and improvements of 0.01 and 0.03 (black lines).

The vertical dashed line is simply the 0 improvement (no improvement but also no regret). The

exact values can be found in Appendix C.1.

There are almost no datasets on which SORFs significantly underperform the best RF type for

that dataset (points below the line in the left plot). In fact, on only one dataset a deterioration of

3

0.2 0.4 0.6 0.8 1.0
Accuracy of Standard RF (blue), LDA RF (orange), and PCA RF (green).

Bullets show significant and circle statistically not significant differences.

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
f S

el
f-O

pt
im

ize
d

RF

0.0 0.1 0.2 0.3 0.4
Accuracy improvement achieved by SORF compared to ...

RF

LDA RF

PCA RF

RF (sign.)

LDA RF (sign.)

PCA RF (sign.)

Oracle

Figure 1: Left: Comparison of accuracies of a SORF compared to standard RFs (green), LDA RFs (blue)

and PCA RFs (orange). Right: Summary of improvements of the SORF over the RF types

on the different datasets. The boxplots labeled with “sign.” only summarize the datasets on

which the difference of the mean performance is statistically significant. The oracle entry

refers to the comparison to the best RF type on a dataset (hence always negative).

more than 0.01 in accuracy can be observed, and this deterioration is not statistically significant.

Among the statistically significantly deviating results, the regret is always under 0.007, and in over

70% of the cases there is no regret at all since SORF obtains the optimal performance.

To analyze the training time behavior, Fig. 2 relates the numbers of trained trees and the actual

training times of SORFs and the individual RF types in several ways. The panel with the two left

plots shows the relative training time compared to the full forest of the respective types (left plot)

and the number of trees grown for each of the types on average based on the chosen forest type

(middle left plot). There is one row for each of the tree types. Every built SORF trained on any

dataset contributes to the row belonging to the tree type it eventually selected (on that dataset (and

split)). Since each SORF builds also other tree types during training, a reasonable question is how

many trees are built of finally discarded tree types and how much time is hence lost in that. So

the figure shows the time spent to train such trees (leftmost plot) or the number of trees of the

different types trained (middle left plot) in the different columns of the matrix; the diagonal shows

the time/number of trees trained of the type that was eventually chosen by the SORF. While the

left panel only shows mean values averaged over the datasets, the panel with the two boxplots

on the right summarizes the relative reduction in training time (middle right plot) or numbers of

trained tree (right plot) per tree type without taking the chosen tree type into account. Again, it is

important to note that the SORFs were limited to a forest size of 100 for the finally chosen tree

type. Without this restriction, some forests would have built more trees requiring more training

time while possibly leading to better results. This analysis is beyond the scope.

Looking first at the left plots, we can observe a substantial runtime reduction on average. The

fourth column of the first plot shows that SORFs exhibit a training time that is roughly only 40% of

the time required to fully train all three forest types with 100 trees and then pick the best one. It

also shows that the eventual choice of the tree types barely affects this number even though PCA

RFs have a significantly higher runtime than the other two forest types on average (not shown

in the figure). Consistently, the middle left plot shows that the number of trained trees is only

40% of the trees that would be trained otherwise, i.e. approximately 120 instead of 300. What is

particularly interesting is that, on average, even for the chosen tree type only roughly 50 instead of

100 trees are trained. This suggests the usefulness of the automated stopping criterion applied by

SORFs, which could of course also be used independently by the RF training algorithms. Note that

the actual numbers of trained trees of the selected type ranges between 10 and 100, and the fact

that it is on average close to 50 is only a coincidence.

The right panel offers a more detailed view on the range of the concrete reductions. They

summarize across the datasets, for each tree type but also in total, how much the training time or

number of trees of that tree type is reduced on average on the respective dataset. For both boxplots

4

RF LDA RFPCA RFTotal
Training time spent per tree type
(relative to maximum possible)

RF
LD

A
RF

PC
A

RF
Ch

os
en

 F
or

es
t T

yp
e 0.51 0.36 0.37 0.41

0.33 0.51 0.36 0.4

0.31 0.34 0.5 0.39

RF LDA RFPCA RFTotal
Numbers of trees grown per tree type

RF
LD

A
RF

PC
A

RF
Ch

os
en

 fo
re

st
 ty

pe 51 36 37 124

33 50 36 119

31 34 50 115

RF

LD
A

RF

PC
A

RF

To
ta

l0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
Co

m
pr

es
sio

n

RF

LD
A

RF

PC
A

RF

To
ta

l0.0

0.2

0.4

0.6

0.8

1.0

Tr
ee

 C
om

pr
es

sio
n

0.35

0.40

0.45

0.50

40

60

80

100

120

Figure 2: Left: Mean training time compression in SORFs for different tree types depending on the

finally chosen tree type. Middle left: Mean number of trees trained per tree depending on

the finally chosen tree type. Middle and outer right: Mean reduction per dataset in training

time/trained trees per tree type and in total summarized over all datasets.

it shows two visual aids at 50% and 25% through the dotted lines. Remarkably, we can see that

the compression of both time and trained trees is better (below) than 50% in more than 75% of the

cases. In roughly 25% of the analyzed datasets, these quantities are even reduced by 75% or more.

Putting everything together, SORFs achieve the same performance as a portfolio consisting

of three RF types while requiring substantially less time for training. Thanks to the projection of

the performance curves and early stopping based on the detection of stale training progress, the

training time can be significantly reduced while sacrificing only a marginal portion of accuracy.

The trivial approach of considering full RFs for all of the types seems only justified if the user is

concerned about accuracy differences on an order that is below 0.01 in accuracy.

5 Conclusion

This paper proposes Self-Optimizing Random Forests (SORFs). SORFs build sub-forests with

different tree types up to a size in which the final performance of each type can be safely predicted

based on a performance curve model. The experimental evaluation over 96 datasets shows that

SORFs with three tree types (standard, with LDA rotations, and with PCA rotations) exhibit optimal

performance compared to a portfolio of RFs of these tree types while requiring only 40% of the

training time on average. While SORFs can be seen as a RF-centered AutoML approach itself,

the results suggest to replace standard RFs in AutoML tools by SORFs since they cover a broader

class of learners than standard RFs with potentially significant performance improvements while

exhibiting a much lower training time compared to adding each of these RF types separately to the

portfolio of the AutoML tool.

The main limitations of this work is that the forests are homogeneous. That is, this work only

considers SORFs in which all trees are (eventually) of the same tree type. Of course, it would be

interesting to know about the effect of mixing different tree types in a single ensemble. On one

hand, trees of the sub-optimal types could negatively affect the overall performance. On the other

hand, RFs consist by definition of week learners, so having a sub-optimal tree type should not

necessarily deteriorate the performance. Indeed, they could even have a kind of regularizing effect.

There are plenty of options for immediate future work. One straight forward question is on the

potential improvements of SORFs if no tree limit is imposed. A second question is on the evaluation

mechanism and whether the usage of a validation set instead of using the OOB estimate can

improve the performance or runtime of the SORF. Finally and with respect to the above limitation,

analyzing the prediction performance of mixed forests that consist of trees of different types would
be interesting, because this could reduce the training time even more while adding more diversity

to the ensemble.

5

References

Bard, Y. (1974). Nonlinear parameter estimation. Academic Press.

Breiman, L. (1996). Bagging predictors. Mach. Learn., 24(2):123–140.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

Bylander, T. (2002). Estimating generalization error on two-class datasets using out-of-bag estimates.

Mach. Learn., 48(1-3):287–297.

Cortes, C., Jackel, L. D., and Chiang, W. (1994). Limits in learning machine accuracy imposed

by data quality. In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural
Information Processing Systems 7, [NIPS Conference, Denver, Colorado, USA, 1994], pages 239–246.
MIT Press.

Domhan, T., Springenberg, J. T., and Hutter, F. (2015). Speeding up automatic hyperparameter

optimization of deep neural networks by extrapolation of learning curves. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 3460–3468. AAAI Press.

Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., and Vanschoren, J. (2019). An open source

automl benchmark. CoRR, abs/1907.00909.

Goldstein, B. A., Polley, E. C., and Briggs, F. B. (2011). Random forests for genetic association studies.

Statistical applications in genetics and molecular biology, 10(1).

Gu, B., Hu, F., and Liu, H. (2001). Modelling classification performance for large data sets. In

Wang, X. S., Yu, G., and Lu, H., editors, Advances in Web-Age Information Management, Second
International Conference, WAIM 2001, Xi’an, China, July 9-11, 2001, Proceedings, volume 2118 of

Lecture Notes in Computer Science, pages 317–328. Springer.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Trans. Pattern
Anal. Mach. Intell., 20(8):832–844.

Janitza, S. and Hornung, R. (2018). On the overestimation of random forest’s out-of-bag error. PloS
one, 13(8):e0201904.

Lemmond, T. D., Hatch, A. O., Chen, B. Y., Knapp, D., Hiller, L., Mugge, M., and Hanley, W. G. (2008).

Discriminant random forests. In Stahlbock, R., Crone, S. F., and Lessmann, S., editors, Proceedings
of The 2008 International Conference on Data Mining, DMIN 2008, July 14-17, 2008, Las Vegas, USA,
2 Volumes, pages 55–61. CSREA Press.

Matthew, W. et al. (2011). Bias of the random forest out-of-bag (oob) error for certain input

parameters. Open Journal of Statistics, 2011.

Menze, B. H., Kelm, B. M., Splitthoff, D. N., Köthe, U., and Hamprecht, F. A. (2011). On oblique

random forests. In Gunopulos, D., Hofmann, T., Malerba, D., and Vazirgiannis, M., editors,

Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD
2011, Athens, Greece, September 5-9, 2011, Proceedings, Part II, volume 6912 of Lecture Notes in
Computer Science, pages 453–469. Springer.

Mohr, F. and van Rijn, J. N. (2022). Learning curves for decision making in supervised machine

learning - A survey. CoRR, abs/2201.12150.

6

Quinlan, J. R. (1997). Decision trees and instance-based classifiers. In Tucker, A. B., editor, The
Computer Science and Engineering Handbook, pages 521–535. CRC Press.

Rodríguez, J. J., Kuncheva, L. I., and Alonso, C. J. (2006). Rotation forest: A new classifier ensemble

method. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1619–1630.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2013). Openml: networked science in

machine learning. SIGKDD Explor., 15(2):49–60.

Wang, F., Wang, Q., Nie, F., Yu, W., Wang, R., and Li, Z. (2020). A forest of trees with principal

direction specified oblique split on random subspace. Neurocomputing, 379:413–425.

Zhang, G., Zhang, C., and Zhang, J. (2010). Out-of-bag estimation of the optimal hyperparameter

in subbag ensemble method. Commun. Stat. Simul. Comput., 39(10):1877–1892.

Zhang, L., Ren, Y., and Suganthan, P. N. (2014). Towards generating random forests via extremely

randomized trees. In 2014 International Joint Conference on Neural Networks, IJCNN 2014, Beijing,
China, July 6-11, 2014, pages 2645–2652. IEEE.

Zhang, L. and Suganthan, P. N. (2014). Random forests with ensemble of feature spaces. Pattern
Recognit., 47(10):3429–3437.

Reproducibility Checklist
Acknowledgements.

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] All the claims are sustained in the experiments or appendix.

(b) Did you describe the limitations of your work? [Yes] They are described throughout the

text and in the conclusion.

(c) Did you discuss any potential negative societal impacts of your work? [No] Since I do not

see that this applies.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

https://automl.cc/ethics-accessibility/ [Yes] Read it.

2. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] It is available at https://github.com/fmohr/selfoptforest

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] In the appendix.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes] They

are in the github repository.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [N/A] This is subjective. I think the code is easy to follow.

7

https://automl.cc/ethics-accessibility/

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] It’s in the appendix.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] The basis for all the methods is the same voting

scheme of the forests.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[N/A] There are no different factors in this paper influencing performance.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] The

evaluation script is identical for the methods.

(i) Did you compare performance over time? [No] Results over time is not relevant for the

research question here. Final times were compared though.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] They

are in the github repository.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] The appendix contains the standard deviations for the results.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] Not necessary.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] The training times are in the appendix.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach;

and also hyperparameters of your own method)? [N/A] No hyperparameter tuning was

conducted.

3. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, to the best of my

knowledge.

(b) Did you mention the license of the assets? [No] The licenses are communicated by the

authors of the artifacts.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] In

the github repository.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] The used source (openml.org) has a clear policy on consents.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] The source has taken over this responsibility.

8

Appendix

A Datasets

id name inst. features classes

3 kr-vs-kp 3196 36 2

6 letter 20000 16 26

11 balance-scale 625 4 3

12 mfeat-factors 2000 216 10

13 breast-cancer 286 9 2

23 cmc 1473 9 3

30 page-blocks 5473 10 5

31 credit-g 1000 20 2

54 vehicle 846 18 4

55 hepatitis 155 19 2

60 waveform-5000 5000 40 3

181 yeast 1484 8 10

201 pol 15000 48 0

299 libras_move 360 90 0

336 SPECT 267 22 2

346 aids 50 4 2

380 SyskillWebert-Bands 61 2 3

446 prnn_crabs 200 7 2

1042 gina_prior 3468 784 2

1049 pc4 1458 37 2

1067 kc1 2109 21 2

1083 mouseType 214 45101 7

1084 BurkittLymphoma 220 22283 3

1085 anthracyclineTaxaneC 159 61359 2

1086 ovarianTumour 283 54621 3

1087 hepatitisC 283 54621 3

1088 variousCancers_final 383 54675 9

1128 OVA_Breast 1545 10936 2

1130 OVA_Lung 1545 10936 2

1134 OVA_Kidney 1545 10936 2

1138 OVA_Uterus 1545 10936 2

1139 OVA_Omentum 1545 10936 2

1142 OVA_Endometrium 1545 10936 2

1146 OVA_Prostate 1545 10936 2

1161 OVA_Colon 1545 10936 2

1233 eating 945 6373 7

1441 KungChi3 123 39 2

1448 KnuggetChase3 194 39 2

1450 MindCave2 125 39 2

1457 amazon-commerce-revi 1500 10000 50

1461 bank-marketing 45211 16 2

1464 blood-transfusion-se 748 4 2

1465 breast-tissue 106 9 6

1468 cnae-9 1080 856 9

1475 first-order-theorem- 6118 51 6

1477 gas-drift-different- 13910 129 6

1479 hill-valley 1212 100 2

1485 madelon 2600 500 2

id name inst. features classes

1487 ozone-level-8hr 2534 72 2

1488 parkinsons 195 22 2

1489 phoneme 5404 5 2

1494 qsar-biodeg 1055 41 2

1499 seeds 210 7 3

1515 micro-mass 571 1300 20

1566 hill-valley 1212 100 2

1591 connect-4 67557 126 0

4134 Bioresponse 3751 1776 2

4137 Dorothea 1150 100000 2

4534 PhishingWebsites 11055 30 2

4538 GesturePhaseSegmenta 9873 32 5

40498 wine-quality-white 4898 11 7

40664 car-evaluation 1728 21 4

40670 dna 3186 180 3

40677 led24 3200 24 10

40685 shuttle 58000 9 7

40687 solar-flare 1066 12 6

40701 churn 5000 20 2

40713 dis 3772 29 2

40900 Satellite 5100 36 2

40910 Speech 3686 400 2

40971 collins 1000 23 30

40975 car 1728 6 4

40978 Internet-Advertiseme 3279 1558 2

40981 Australian 690 14 2

40982 steel-plates-fault 1941 27 7

40983 wilt 4839 5 2

40984 segment 2310 19 7

40994 climate-model-simula 540 20 2

41027 jungle_chess_2pcs_ra 44819 6 3

41142 christine 5418 1636 2

41143 jasmine 2984 144 2

41144 madeline 3140 259 2

41145 philippine 5832 308 2

41146 sylvine 5124 20 2

41156 ada 4147 48 2

41157 arcene 100 10000 2

41158 gina 3153 970 2

41159 guillermo 20000 4296 2

41163 dilbert 10000 2000 5

41164 fabert 8237 800 7

41165 robert 10000 7200 10

41166 volkert 58310 180 10

41168 jannis 83733 54 4

41972 Indian_pines 9144 220 8

42809 kits 1000 27648 2

42810 PCam 4000 27648 2

9

B Algorithm

B.1 Creating Performance Curves Using the Out-of-Bag Error

If the trees of an RF are trained (semi-)sequentially, one can create a performance curve during

training. This performance curve is similar to what Cortes et al. (Cortes et al., 1994) refer to as

a capacity curve since it shows the performance of the ensemble, i.e., the accuracy or the cross-

entropy-loss, as a function of the ensemble size and hence the capacity of the ensemble. The term

of a learning curve is deliberately avoided here, because this is typically considered as a function of

the number of training samples or time or iterations spent by an optimizer.

There are mainly two possibilities to create this type of performance curve in RFs. The first

one is to separate a fraction of data points for this purpose. This is the same strategy most AutoML

tools would apply when considering each forest type as one algorithm and optimizing over these

(without of course building an explicit performance curve). The second approach is to exploit the

fact that random forests have the capacity to estimate the generalization performance through the

notion of the out-of-bag (OOB) estimate. The OOB estimate is computed simply by predicting the

labels of all the data points in the training data but, for every instance 𝑥𝑖 in the dataset only using

those trees of the ensemble for predictions that did not have 𝑥𝑖 in their bootstrap sample.

None of the two strategies is obviously superior over the other. Based on the claims that the

OOB error is an unbiased estimate for the test error (Breiman, 2001; Zhang et al., 2010; Goldstein

et al., 2011) and quickly becomes stable, one might consider the OOB error the better choice since

it does not require to sacrifice data points. However, it has been known for a time that the OOB

estimate can (even for forests with hundreds of trees and with thousands of instances) substantially

deviate from the test performance (Bylander, 2002; Matthew et al., 2011; Janitza and Hornung, 2018).

While literature mostly reports that OOB is too optimistic (Janitza and Hornung, 2018), many cases

could be observed in which the test performance was significantly better than the OOB estimate.

So on large datasets it could be preferable to use a validation fold instead of an OOB estimate to

create the performance curve.

This paper sticks to the OOB estimate despite its possible bias. Separating validation data can

be unacceptable on small datasets, and providing a principled decision criterion for one of the two

techniques based on the dataset at hand is not straight forward. The threat of using the OOB is

that projected OOB estimate curves have a different best tree type than the true test performance

curves. In that case, using the OOB leads to a sub-optimal decision. While this is a valid concern,

our experiments show that using the OOB estimate yields convincing results and is, in spite of its

shortcomings, at least order-preserving. Clearly, these results do not say that OOB is consistently

a good estimator for the test performance but only that the order of tree types with respect to

performances is apparently not severely affected, so that SORFs still achieve optimal performance.

A study how this compares to explicitly building a validation fold is left for future work.

B.2 Performance Curve Extrapolation

In order to speed up the learning process, the performance curve of the RFs as a function of

the number of trees is extrapolated. This is a regression problem in which the parameters of a

parametric curve model are optimized in order to estimate the value of the performance curve at

any arbitrary point (here number of trees). Once these extrapolations are stable, the sub-optimal

tree types are discarded in order to avoid that the full number of trees is built. Sec. B.3 describes

how this model is used for decision making in more detail.

This paper follows an extrapolation technique based on a maximum likelihood estimate for

the four-parametric Morgan-Mercer-Flodin (MMF) model class, which has been used to model

performance curves before in terms of sample size (Gu et al., 2001) or iterations of a neural network

10

(Domhan et al., 2015). This class models a performance curve by

𝑓 (𝑥) = 𝑎𝑏 + 𝑐𝑥𝑑

𝑏 + 𝑥𝑑
(1)

where 𝑥 in our case is the number of trees in the forest. Given a set of observations, the parameters

𝑎, 𝑏, 𝑐, 𝑑 ≥ 0 can be easily estimated with standard interpolation techniques such as the Levenberg-

Marquardt method (Bard, 1974). Once the parameters are estimated, one can predict the performance

for any specific forest size. If no limit is given, the best possible performance of the forest is estimated

by lim𝑥→∞ 𝑓 (𝑥) = 𝑐 .

The MMF curve class is chosen since it showed best results in preliminary experiments and

other works (Mohr and van Rijn, 2022). Several other curve models have been used in the past,

most notably the inverse power law (IPL), which is by margin the most widely used model for

extrapolation (Mohr and van Rijn, 2022). Due to its relevance in the literature, Appendix C.2

describes the detailed results that would have been obtained if the IPL model class would have

been used instead of the MMF class. While there are still some gains in the runtime, the advantage

is much less pronounced.

B.3 The Training Algorithm

The training algorithm is simple and sketched in Alg. 1. It consists of two stages: In the first stage,

a forest is trained for each tree type in sequence until a stopping criterion is met. The stopping

criteria are (i) a stagnation of the performance curve, (ii) stability in the forecast created by the

performance curve extrapolation, or (iii) that a possibly predefined maximum number of trees 𝐿

has been trained. Once the first stage is completed, the performance forecast is used to pick the

tree type that is expected to perform best. The algorithm then adds trees to the forest of this tree

type and updates the forecast until stagnation of the performance curve is detected or the upper

limit of the number of trees is reached. Stagnation detection and forecast stability are checked by a

learning curve model 𝑐 based on a curve assumption discussed in Sec. B.2, and it is now described

more formally how those decisions are being made.

The stagnation stopping criterion c.is_stale() is based on two parameters. The parameter Ystag
controls by how much the accuracy of the forest must improve at least in order to keep training.

However, the performance curves obtained from OOB estimates can exhibit a significant zig-zag

behavior, because, in contrast to cross-validation, there is only one observation at each forest size.

To reduce this effect, the check is not applied to the curve itself but a smoothened curve in which

the performance at “size” 𝑘 averages the values of the forest sizes [𝑘 −wstag, 𝑘]. Observe that, since
the increments in size are always 1, Ystag is a threshold for the minimum slope of the (smoothened)

performance curve required to continue learning.

Stability in the forecast of performance curves is considered to occur in a similar way based on

windowing. In each iteration, the algorithm memorizes the expected performance of the considered

tree type as a result of the performance curve extrapolation. These forecasts then generate a

forecast history over time. c.stable_forecast () returns true iff the variance in the wforecast most

recent forecasts is less than Yforecast . In other words, if the prediction about the best possible

performance of a forest type does not change substantially anymore, the prediction model can be

considered to be sufficiently accurate and rely on its prediction. Unless being configured with a

very tight (small) Yforecast , it will usually be the case that this criterion will apply prior to stagnation.

B.4 Experimental Setup

The RFs were configured as follows for the experiments. To enable better comparison, the maximum

number of trees was set to 100 even though this hyperparameter is optional for SORFs. The purity

parameter 𝜋 was set to 0.9, and the minimum number of instances in a leaf [was set to 5. PCA RFs

11

Algorithm 1: SelfOptimizingRandomForest

Input : Maximum number of trees 𝐿

Stagnation parameters (Ystag , wstag)

Forecast stability parameters (Yforecast , wforecast)

Output : A trained forest of size up to 𝐿 with the best tree type

1 𝐶 ← [],𝑀 ← [];
2 foreach tree type 𝑡 do
3 𝑚 ← new RandomForest(𝑡);

4 𝑐 ← new CurveModel(Ystag , wstag , wforecast , Yforecast);

5 while m.size() < 𝐿 ∧ ¬c.is_stale() ∧¬c.stable_forecast() do
6 m.train_and_add_tree();

7 c.tell(m.size(), m.get_oob_estimate());

8 M .append (m);
9 C .append (c);

10 𝑖∗ ← argmax𝑖{𝐶 [𝑖] .𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝐿)};
11 𝑚 ← 𝑀 [𝑖∗];
12 𝑐 ← 𝐶 [𝑖∗];
13 while m.size() < 𝐿 ∧ ¬c.is_stale() do
14 m.train_and_add_tree();

15 c.tell(m.size(), m.get_oob_estimate());

16 return m

were configured to consider all of the dimensions (PCA simply used for rotation but not projection).

The SORF hyperparameters were set to wstag = 10, Ystag = 10
−4
, wforecast = 10, and Yforecast = 10

−3
,

which could arguably be considered reasonable default values; they have not been tuned. While a

sensitivity study of these parameters is beyond our scope, one would not expect big surprises or

high variance in such a study but that the performance is rather robust.

The computations for this experimentation required 58.5 CPU days in a compute center with

Linux machines, each of them equipped with 2.6Ghz Intel Xeon E5-2670 processors and 16GB

memory. No timeouts were imposed when training the forests and computing the voting schemes.

12

C Results in Detail

Test accuracies achieved by the different approaches. Bold entries are best (mean values, averaged

over 20 seeds) and underlined are not statistically significantly different from the best according to

a Wilcoxon signed rank test with a p-value of 0.05.

C.1 Results Using MMF For Extrapolation

id RF LDA RF PCA RF SORF

3 97.2±0.2 97.52±0.3 97.03±0.3 97.35±0.4
6 94.08±0.1 94.95±0.1 95.03±0.1 95.02±0.1
11 85.44±0.8 89.35±0.9 89.03±0.9 89.29±1.1
12 95.28±0.4 97.1±0.3 96.73±0.4 97.09±0.4
13 73.12±1.5 72.63±1.7 72.81±1.9 73.06±1.7
23 52.81±1.2 52.78±1.2 52.37±1.4 53.04±1.3
30 91.9±1.5 91.89±1.4 92.49±1.8 92.44±1.8
31 74.51±1.0 74.19±1.3 74.41±1.0 74.67±1.1
54 74.4±1.1 78.78±1.0 78.73±0.9 78.93±0.9
55 84.5±2.1 85.07±1.9 84.79±2.2 85.78±1.7
60 84.36±0.4 85.92±0.4 85.65±0.4 85.75±0.4
181 61.14±0.9 61.11±1.1 61.5±0.8 61.35±1.0
201 84.18±0.2 83.96±0.2 83.2±0.2 84.17±0.2
299 74.31±2.2 82.99±1.7 83.6±1.9 84.0±1.9
336 82.42±1.7 81.96±1.5 82.48±1.2 82.36±1.5
346 42.62±6.6 34.7±6.2 35.35±8.1 39.71±7.1
380 62.89±4.9 62.89±4.9 62.36±5.3 62.89±4.9
446 88.52±1.8 98.92±0.7 99.03±0.8 99.13±0.8
1042 92.18±0.3 90.22±0.3 90.73±0.3 92.18±0.3
1049 89.76±0.5 90.07±0.5 89.66±0.4 90.07±0.4
1067 85.85±0.6 86.12±0.5 86.38±0.5 86.27±0.5
1083 65.99±2.7 60.29±3.0 59.99±2.7 65.87±2.8
1084 81.44±1.5 88.8±1.8 79.64±1.8 88.8±1.8
1085 54.91±4.4 52.79±3.5 55.06±3.3 55.0±3.9
1086 88.21±1.0 88.19±1.3 88.31±1.2 88.64±1.2
1087 88.21±1.0 88.19±1.3 88.31±1.2 88.64±1.2
1088 79.33±1.5 76.01±1.7 74.55±1.6 79.04±1.7
1128 95.24±0.5 97.25±0.4 89.21±1.0 97.25±0.4
1130 91.96±0.4 91.96±0.4 91.96±0.4 91.96±0.4
1134 96.64±0.4 98.62±0.2 95.83±0.4 98.62±0.2
1138 92.09±0.4 92.09±0.4 92.09±0.4 92.09±0.4
1139 95.08±0.3 95.08±0.3 95.08±0.3 95.08±0.3
1142 96.0±0.2 96.0±0.2 96.0±0.2 96.0±0.2
1146 95.55±0.2 95.55±0.2 95.55±0.2 95.55±0.2
1161 95.98±0.4 96.78±0.3 90.33±1.3 96.78±0.3
1233 48.02±1.4 57.79±1.1 36.73±2.0 57.79±1.1
1441 86.07±2.3 86.24±2.1 86.73±1.9 86.69±1.9
1448 79.35±1.7 79.91±2.1 80.55±1.8 80.77±1.7
1450 69.01±2.8 69.56±3.2 70.22±3.8 69.68±3.2
1457 30.87±1.6 21.19±1.1 17.82±1.0 30.29±2.6
1461 89.34±0.1 89.24±0.1 89.17±0.1 89.31±0.1
1464 77.83±1.3 78.25±1.2 77.86±1.2 78.08±1.4
1465 40.71±4.9 40.14±6.0 39.68±4.7 40.25±4.8
1468 89.33±0.7 91.17±0.6 87.27±0.9 90.92±1.0
1475 60.92±0.4 60.69±0.4 60.77±0.4 60.91±0.4
1477 98.41±0.1 98.97±0.1 99.19±0.0 99.18±0.0
1479 55.84±1.4 92.21±0.5 92.45±0.6 92.43±0.6
1485 68.3±1.1 57.5±0.9 57.84±1.1 68.3±1.1

id RF LDA RF PCA RF SORF

1487 93.72±0.3 93.72±0.3 93.72±0.3 93.72±0.3
1488 87.87±1.6 88.21±1.0 88.23±1.3 88.67±1.1
1489 88.17±0.3 88.55±0.3 88.58±0.3 88.59±0.3
1494 85.86±0.8 87.06±0.6 86.63±0.7 86.89±0.7
1499 90.53±1.1 91.67±1.3 91.49±1.4 91.86±1.3
1515 83.06±1.5 67.94±2.1 76.34±1.4 82.75±2.0
1566 59.35±1.2 100.0±0.0 99.99±0.0 100.0±0.0
1591 81.28±0.1 81.24±0.1 78.69±0.1 81.29±0.1
4134 79.03±0.6 77.33±0.4 76.19±0.5 78.66±1.0
4137 90.24±0.4 90.24±0.4 90.24±0.4 90.24±0.4
4534 94.73±0.3 95.36±0.2 94.89±0.2 95.24±0.3
4538 63.42±0.5 61.76±0.3 61.97±0.4 63.25±0.6
40498 65.86±0.6 66.67±0.6 66.99±0.5 66.86±0.6
40664 92.92±0.6 94.27±0.6 94.67±0.6 94.37±0.8
40670 94.56±0.3 93.1±0.4 93.58±0.5 94.55±0.3
40677 71.61±0.7 71.82±0.6 71.59±0.7 71.86±0.7
40685 99.52±0.0 99.36±0.1 99.51±0.0 99.52±0.0
40687 75.27±1.0 74.82±0.9 74.69±1.1 75.02±1.0
40701 89.44±0.2 88.9±0.3 89.14±0.3 89.4±0.3
40713 98.42±0.1 98.42±0.1 98.42±0.1 98.42±0.1
40900 98.58±0.1 98.58±0.1 98.58±0.1 98.58±0.1
40910 98.32±0.2 98.32±0.2 98.32±0.2 98.32±0.2
40971 23.61±1.7 23.91±1.2 24.11±1.4 24.64±1.0
40975 80.15±1.0 81.88±1.0 84.14±0.9 84.09±1.0
40978 90.54±0.3 92.33±0.3 91.93±0.3 92.27±0.3
40981 86.49±1.2 86.39±1.2 86.7±0.8 86.8±1.0
40982 76.23±0.6 74.86±0.6 75.63±0.6 76.05±0.7
40983 94.66±0.2 94.66±0.2 94.66±0.2 94.66±0.2
40984 92.24±0.4 93.8±0.5 93.49±0.4 93.76±0.5
40994 91.36±0.8 91.36±0.8 91.36±0.8 91.36±0.8
41027 81.42±0.2 81.22±0.1 81.32±0.2 81.36±0.2
41142 71.69±0.4 72.72±0.4 71.07±0.5 72.56±0.5
41143 80.86±0.5 79.86±0.8 80.02±0.5 80.66±0.6
41144 74.83±0.9 61.5±0.8 63.26±0.9 74.83±0.9
41145 74.15±0.5 72.37±0.4 72.48±0.5 74.09±0.5
41146 92.27±0.2 92.53±0.2 92.76±0.2 92.69±0.2
41156 84.84±0.5 84.49±0.5 83.7±0.8 84.79±0.5
41157 71.96±3.5 71.24±3.7 66.25±6.1 72.43±3.5
41158 91.4±0.4 87.65±0.5 86.56±0.5 91.4±0.4
41159 79.89±0.2 62.63±0.4 60.59±0.4 79.89±0.2
41163 94.79±0.2 94.39±0.2 93.45±0.3 94.45±0.6
41164 67.57±0.5 60.38±0.4 60.18±0.5 67.57±0.5
41165 39.29±0.6 36.74±0.5 27.52±0.4 39.29±0.6
41166 64.62±0.1 62.44±0.2 62.33±0.2 64.62±0.1
41168 69.23±0.1 68.24±0.2 68.8±0.2 69.1±0.2
41972 88.9±0.2 91.88±0.3 92.48±0.2 92.45±0.2
42809 73.38±0.9 64.89±1.8 58.43±1.9 73.38±0.9
42810 74.59±0.5 68.81±0.5 63.83±0.7 74.59±0.5

13

C.2 Results Using IPL For Extrapolation

The IPL is defined as 𝑓 (𝑥) = 𝑎 − 𝑏𝑥−𝑐 (Cortes et al., 1994) and the most widely used class model

for learning curves (Mohr and van Rijn, 2022). Using it for extrapolation, the following results are

obtained, which are much less exciting than those obtained using MMF.

RF LDA RFPCA RFTotal
Training time spent per tree type
(relative to maximum possible)

RF
LD

A
RF

PC
A

RF
Ch

os
en

 F
or

es
t T

yp
e 0.63 0.52 0.55 0.56

0.46 0.59 0.52 0.52

0.46 0.51 0.58 0.52

RF LDA RFPCA RFTotal
Numbers of trees grown per tree type

RF
LD

A
RF

PC
A

RF
Ch

os
en

 fo
re

st
 ty

pe 63 51 55 169

45 59 52 156

46 51 58 155

RF

LD
A

RF

PC
A

RF

To
ta

l0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
Co

m
pr

es
sio

n

RF

LD
A

RF

PC
A

RF

To
ta

l0.0

0.2

0.4

0.6

0.8

1.0

Tr
ee

 C
om

pr
es

sio
n

0.50

0.55

0.60

50

75

100

125

150

Figure 3: Computations with the IPL. Semantics identical to Fig. 2.

openmlid RF LDA RF PCA RF SORF

3 97.2±0.2 97.52±0.3 97.03±0.3 97.5±0.3
6 94.08±0.1 94.95±0.1 95.03±0.1 95.05±0.1
11 85.44±0.8 89.35±0.9 89.03±0.9 89.38±1.0
12 95.28±0.4 97.1±0.3 96.73±0.4 97.09±0.4
13 73.12±1.5 72.63±1.7 72.81±1.9 72.95±1.7
23 52.81±1.2 52.78±1.2 52.37±1.4 52.85±1.1
30 91.9±1.5 91.89±1.4 92.49±1.8 92.45±1.8
31 74.51±1.0 74.19±1.3 74.41±1.0 74.55±1.0
54 74.4±1.1 78.78±1.0 78.73±0.9 78.98±1.0
55 84.5±2.1 85.07±1.9 84.79±2.2 85.69±1.7
60 84.36±0.4 85.92±0.4 85.65±0.4 85.92±0.4
181 61.14±0.9 61.11±1.1 61.5±0.8 61.47±1.0
201 84.18±0.2 83.96±0.2 83.2±0.2 84.18±0.2
299 74.31±2.2 82.99±1.7 83.6±1.9 83.84±1.6
336 82.42±1.7 81.96±1.5 82.48±1.2 82.21±1.5
346 42.62±6.6 34.7±6.2 35.35±8.1 39.27±7.1
380 62.89±4.9 62.89±4.9 62.36±5.3 62.89±4.9
446 88.52±1.8 98.92±0.7 99.03±0.8 99.07±0.7
1042 92.18±0.3 90.22±0.3 90.73±0.3 92.12±0.4
1049 89.76±0.5 90.07±0.5 89.66±0.4 90.15±0.4
1067 85.85±0.6 86.12±0.5 86.38±0.5 86.3±0.5
1083 65.99±2.7 60.29±3.0 59.99±2.7 65.67±2.9
1084 81.44±1.5 88.8±1.8 79.64±1.8 88.53±2.2
1085 54.91±4.4 52.79±3.5 55.06±3.3 54.9±3.8
1086 88.21±1.0 88.19±1.3 88.31±1.2 88.74±1.1
1087 88.21±1.0 88.19±1.3 88.31±1.2 88.74±1.1
1088 79.33±1.5 76.01±1.7 74.55±1.6 78.77±1.6
1128 95.24±0.5 97.25±0.4 89.21±1.0 97.25±0.4
1130 91.96±0.4 91.96±0.4 91.96±0.4 91.96±0.4
1134 96.64±0.4 98.62±0.2 95.83±0.4 98.62±0.2
1138 92.09±0.4 92.09±0.4 92.09±0.4 92.09±0.4
1139 95.08±0.3 95.08±0.3 95.08±0.3 95.08±0.3
1142 96.0±0.2 96.0±0.2 96.0±0.2 96.0±0.2
1146 95.55±0.2 95.55±0.2 95.55±0.2 95.55±0.2
1161 95.98±0.4 96.78±0.3 90.33±1.3 96.78±0.3
1233 48.02±1.4 57.79±1.1 36.73±2.0 57.79±1.1
1441 86.07±2.3 86.24±2.1 86.73±1.9 86.71±2.0
1448 79.35±1.7 79.91±2.1 80.55±1.8 80.5±1.5
1450 69.01±2.8 69.56±3.2 70.22±3.8 70.21±3.0
1457 30.87±1.6 21.19±1.1 17.82±1.0 30.87±1.6
1461 89.34±0.1 89.24±0.1 89.17±0.1 89.31±0.1
1464 77.83±1.3 78.25±1.2 77.86±1.2 78.33±1.3
1465 40.71±4.9 40.14±6.0 39.68±4.7 40.75±5.1
1468 89.33±0.7 91.17±0.6 87.27±0.9 91.1±0.6
1475 60.92±0.4 60.69±0.4 60.77±0.4 60.97±0.4
1477 98.41±0.1 98.97±0.1 99.19±0.0 99.19±0.0
1479 55.84±1.4 92.21±0.5 92.45±0.6 92.57±0.6
1485 68.3±1.1 57.5±0.9 57.84±1.1 68.3±1.1

openmlid RF LDA RF PCA RF SORF

1487 93.72±0.3 93.72±0.3 93.72±0.3 93.72±0.3
1488 87.87±1.6 88.21±1.0 88.23±1.3 88.6±1.3
1489 88.17±0.3 88.55±0.3 88.58±0.3 88.61±0.3
1494 85.86±0.8 87.06±0.6 86.63±0.7 86.98±0.7
1499 90.53±1.1 91.67±1.3 91.49±1.4 91.98±1.1
1515 83.06±1.5 67.94±2.1 76.34±1.4 83.06±1.5
1566 59.35±1.2 100.0±0.0 99.99±0.0 100.0±0.0
1591 81.28±0.1 81.24±0.1 78.69±0.1 81.31±0.1
4134 79.03±0.6 77.33±0.4 76.19±0.5 78.86±0.9
4137 90.24±0.4 90.24±0.4 90.24±0.4 90.24±0.4
4534 94.73±0.3 95.36±0.2 94.89±0.2 95.29±0.2
4538 63.42±0.5 61.76±0.3 61.97±0.4 63.42±0.5
40498 65.86±0.6 66.67±0.6 66.99±0.5 67.05±0.5
40664 92.92±0.6 94.27±0.6 94.67±0.6 94.71±0.5
40670 94.56±0.3 93.1±0.4 93.58±0.5 94.58±0.3
40677 71.61±0.7 71.82±0.6 71.59±0.7 71.74±0.6
40685 99.52±0.0 99.36±0.1 99.51±0.0 99.52±0.0
40687 75.27±1.0 74.82±0.9 74.69±1.1 75.03±0.9
40701 89.44±0.2 88.9±0.3 89.14±0.3 89.41±0.3
40713 98.42±0.1 98.42±0.1 98.42±0.1 98.42±0.1
40900 98.58±0.1 98.58±0.1 98.58±0.1 98.58±0.1
40910 98.32±0.2 98.32±0.2 98.32±0.2 98.32±0.2
40971 23.61±1.7 23.91±1.2 24.11±1.4 24.24±1.1
40975 80.15±1.0 81.88±1.0 84.14±0.9 84.13±0.9
40978 90.54±0.3 92.33±0.3 91.93±0.3 92.27±0.3
40981 86.49±1.2 86.39±1.2 86.7±0.8 86.87±1.0
40982 76.23±0.6 74.86±0.6 75.63±0.6 76.15±0.6
40983 94.66±0.2 94.66±0.2 94.66±0.2 94.66±0.2
40984 92.24±0.4 93.8±0.5 93.49±0.4 93.79±0.5
40994 91.36±0.8 91.36±0.8 91.36±0.8 91.36±0.8
41027 81.42±0.2 81.22±0.1 81.32±0.2 81.41±0.2
41142 71.69±0.4 72.72±0.4 71.07±0.5 72.63±0.5
41143 80.86±0.5 79.86±0.8 80.02±0.5 80.8±0.6
41144 74.83±0.9 61.5±0.8 63.26±0.9 74.83±0.9
41145 74.15±0.5 72.37±0.4 72.48±0.5 74.15±0.5
41146 92.27±0.2 92.53±0.2 92.76±0.2 92.75±0.2
41156 84.84±0.5 84.49±0.5 83.7±0.8 84.78±0.5
41157 71.96±3.5 71.24±3.7 66.25±6.1 72.43±3.3
41158 91.4±0.4 87.65±0.5 86.56±0.5 91.4±0.4
41159 79.89±0.2 62.63±0.4 60.59±0.4 79.89±0.2
41163 94.79±0.2 94.39±0.2 93.45±0.3 94.72±0.3
41164 67.57±0.5 60.38±0.4 60.18±0.5 67.57±0.5
41165 39.29±0.6 36.74±0.5 27.52±0.4 39.29±0.6
41166 64.62±0.1 62.44±0.2 62.33±0.2 64.62±0.1
41168 69.23±0.1 68.24±0.2 68.8±0.2 69.23±0.1
41972 88.9±0.2 91.88±0.3 92.48±0.2 92.46±0.2
42809 73.38±0.9 64.89±1.8 58.43±1.9 73.38±0.9
42810 74.59±0.5 68.81±0.5 63.83±0.7 74.59±0.5

14

D Training Times

The following table provides the training times for the different forest types on the different datasets;

units are in seconds. Overall training time for all forest types and all seeds was 1402.9 CPU hours

(no GPUs were used).

id RF LDA RF PCA RF SORF

3 42±3 25±2 116±8 80±31
6 330±25 461±37 4244±311 3782±919
11 4±0 5±1 11±1 8±1
12 74±6 43±3 372±29 230±116
13 5±0 5±0 16±1 7±3
23 23±2 33±2 110±8 71±23
30 6±1 8±2 31±9 11±9
31 24±2 12±1 63±5 40±10
54 13±1 13±1 46±3 30±6
55 1±0 1±0 3±0 1±0
60 107±7 54±4 338±24 258±74
181 18±1 34±3 97±7 64±12
201 227±15 232±19 1603±102 758±201
299 13±1 10±1 53±4 48±12
336 2±0 2±0 7±1 3±1
346 1±0 1±0 2±0 1±0
380 3±0 2±0 5±1 3±2
446 1±0 1±0 2±0 2±1
1042 258±21 101±8 743±53 577±209
1049 13±1 6±1 33±4 13±3
1067 18±2 11±1 49±5 24±6
1083 453±30 334±22 460±37 565±179
1084 165±13 86±5 180±12 150±31
1085 329±14 195±9 324±18 167±31
1086 276±29 236±19 297±32 219±36
1087 267±26 228±17 283±32 212±34
1088 1009±59 683±33 1009±52 1343±231
1128 467±34 245±14 697±48 409±50
1130 123±10 123±8 127±12 128±93
1134 327±19 246±18 468±34 290±39
1138 125±12 125±8 129±11 53±9
1139 121±7 125±8 128±10 100±10
1142 119±7 122±7 124±7 98±8
1146 123±9 125±9 126±10 51±4
1161 359±24 252±18 553±48 320±55
1233 596±33 216±14 773±55 800±232
1441 1±0 0±0 2±1 1±0
1448 2±0 1±0 5±0 2±0
1450 2±0 1±0 5±0 2±1
1457 1314±73 1463±95 1587±101 2992±526
1461 312±25 181±12 835±69 319±188
1464 5±0 7±1 15±1 7±2
1465 2±0 3±0 6±1 3±1
1468 217±10 119±6 648±35 706±139
1475 226±17 212±16 1112±71 886±262
1477 434±31 166±13 1468±112 856±181
1479 106±11 13±1 87±6 98±21
1485 270±15 76±6 725±52 392±116

id RF LDA RF PCA RF SORF

1487 2±0 2±0 2±0 1±0
1488 1±0 1±0 3±0 2±0
1489 37±3 41±4 105±8 75±28
1494 13±1 7±1 36±3 20±4
1499 1±0 1±0 2±0 1±0
1515 91±6 63±4 158±11 234±55
1566 113±11 3±1 33±3 53±28
1591 2970±199 1980±111 8912±493 6987±1894
4134 849±49 301±20 1782±116 1739±559
4137 1287±281 1159±176 1269±225 1221±991
4534 110±7 57±4 302±24 133±27
4538 333±19 311±18 1339±83 1212±282
40498 90±6 131±9 419±31 332±102
40664 15±1 18±2 58±5 48±15
40670 125±7 48±3 373±21 317±108
40677 58±4 89±8 305±22 280±71
40685 104±7 102±7 497±30 347±205
40687 11±1 13±1 63±5 39±14
40701 29±3 17±1 94±8 36±8
40713 1±0 1±0 1±0 1±0
40900 2±0 2±0 2±0 2±0
40910 11±1 11±1 11±1 9±1
40971 29±2 41±3 226±14 158±41
40975 14±1 24±3 68±5 46±9
40978 232±18 95±6 250±21 142±19
40981 8±1 6±0 23±2 16±5
40982 40±2 46±3 192±14 125±27
40983 1±0 1±0 1±0 0±0
40984 23±1 24±2 101±6 47±6
40994 1±0 1±0 2±1 2±2
41027 291±20 698±394 1645±710 892±456
41142 1165±81 383±23 2339±131 2061±597
41143 112±7 41±2 304±20 228±61
41144 213±14 64±5 657±47 481±136
41145 481±33 129±9 1146±75 774±204
41146 44±3 30±2 148±10 77±21
41156 59±4 37±3 191±13 115±37
41157 35±3 14±1 35±2 21±7
41158 276±16 102±6 782±42 532±101
41159 12052±543 5404±391 28376±1663 18174±3579
41163 2750±135 915±54 6448±420 8550±1119
41164 6031±379 1532±102 10831±590 16058±3047
41165 9604±545 5144±288 22115±1081 25829±5586
41166 4341±275 3766±230 29830±1683 19960±3564
41168 4043±233 2314±155 14659±828 10002±3786
41972 448±25 175±10 1513±85 1023±235
42809 1567±97 553±35 1138±74 1276±304
42810 8424±462 3267±223 10019±580 12821±3749

15

E Built Trees

Average number of tree types built by SORF on the different datasets. The configured maximum

per tree types was 100.

id Standard Trees LDA Trees PCA Trees Total

3 31±11 48±23 48±23 127±43
6 27±5 43±28 83±26 153±12
11 35±8 41±13 40±10 116±18
12 32±7 60±22 48±28 140±47
13 27±15 32±15 24±14 83±36
23 47±20 44±21 41±17 133±42
30 18±4 19±11 24±12 61±23
31 40±7 39±10 41±14 120±16
54 31±5 48±13 44±12 123±17
55 31±10 32±12 28±11 91±20
60 36±8 48±19 57±20 141±32
181 43±10 48±10 41±10 132±17
201 40±13 33±12 37±11 110±33
299 58±15 62±19 66±20 186±42
336 34±14 30±13 32±11 95±30
346 19±5 17±4 18±4 53±9
380 33±34 28±30 27±24 88±76
446 36±16 42±20 41±20 119±47
1042 64±18 34±8 51±21 149±41
1049 23±8 25±8 24±8 72±15
1067 30±12 31±15 32±11 93±25
1083 54±18 43±13 37±14 135±36
1084 34±8 46±13 30±9 110±22
1085 20±6 18±5 20±5 59±10
1086 28±6 30±8 25±5 83±12
1087 28±6 30±8 25±5 83±12
1088 56±18 58±14 38±11 152±23
1128 26±4 37±7 28±5 92±10
1130 34±22 34±22 33±18 101±62
1134 26±4 32±4 27±4 85±9
1138 15±1 13±1 14±2 42±4
1139 27±2 27±2 27±2 81±6
1142 27±2 27±2 27±2 81±6
1146 15±0 13±0 13±0 41±0
1161 27±5 34±7 24±3 86±11
1233 57±23 73±19 39±17 169±44
1441 20±5 19±5 21±5 60±8
1448 17±4 24±8 23±6 63±12
1450 30±20 22±13 25±12 77±33
1457 95±17 55±22 61±27 210±35
1461 27±18 21±5 24±18 73±36
1464 29±13 28±13 25±9 82±24
1465 30±13 28±11 30±12 87±23
1468 43±21 79±21 80±19 202±33
1475 48±19 60±22 59±20 167±41
1477 30±3 33±13 46±11 109±22
1479 24±7 69±19 73±20 166±31
1485 57±17 27±12 30±13 114±28

id Standard Trees LDA Trees PCA Trees Total

1487 15±0 13±0 13±0 41±0
1488 31±7 28±7 30±6 89±13
1489 34±8 47±20 40±18 121±33
1494 36±13 40±13 36±10 112±27
1499 26±7 30±14 34±11 90±26
1515 74±20 76±23 75±19 224±47
1566 32±19 43±26 46±30 122±62
1591 59±32 75±23 42±12 176±51
4134 63±24 42±18 60±23 165±41
4137 36±33 34±31 28±21 98±77
4534 27±6 36±11 27±9 90±10
4538 83±21 54±17 57±22 194±21
40498 40±12 61±19 52±23 152±36
40664 51±20 58±19 52±24 161±44
40670 72±21 43±19 55±22 171±43
40677 63±21 63±21 61±17 187±38
40685 61±35 35±27 50±36 145±75
40687 35±20 41±23 47±20 123±44
40701 32±10 25±9 25±9 82±18
40713 28±1 28±1 28±1 83±3
40900 27±1 27±1 27±1 82±3
40910 27±1 27±1 27±1 82±4
40971 55±15 56±18 53±16 163±33
40975 30±5 35±9 49±13 114±14
40978 24±2 26±6 24±3 74±7
40981 44±16 37±11 44±16 125±31
40982 51±16 44±13 44±12 139±25
40983 15±0 13±0 13±0 41±0
40984 26±4 40±9 31±5 98±8
40994 55±37 50±31 58±37 162±98
41027 26±8 26±5 35±5 87±9
41142 59±21 66±22 48±17 172±46
41143 55±19 46±17 49±17 149±37
41144 71±19 39±14 46±17 156±34
41145 56±20 33±10 40±16 130±29
41146 29±9 35±12 36±11 99±23
41156 39±8 40±18 41±17 119±33
41157 28±12 22±7 24±10 74±22
41158 54±9 35±6 44±13 133±15
41159 69±9 24±8 30±12 123±14
41163 65±35 56±35 97±13 218±31
41164 93±13 88±13 84±21 265±37
41165 99±2 80±19 55±24 234±31
41166 96±6 42±11 49±14 187±18
41168 64±27 28±7 46±31 138±14
41972 26±4 29±10 56±15 112±14
42809 53±16 32±17 24±9 109±30
42810 69±19 55±21 52±20 176±51

16

	Introduction
	Background on Oblique Random Forests
	Self-Optimizing Random Forests
	Experimental Evaluation
	Conclusion
	Datasets
	Algorithm
	Creating Performance Curves Using the Out-of-Bag Error
	Performance Curve Extrapolation
	The Training Algorithm
	Experimental Setup

	Results in Detail
	Results Using MMF For Extrapolation
	Results Using IPL For Extrapolation

	Training Times
	Built Trees

