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Abstract We present Improved Max-value Entropy search for Multi-Objective Bayesian optimization
with Constraints (MESMOCH+) for the constrained optimization of expensive-to-evaluate
black-boxes. It is based on minimizing the entropy of the solution of the problem in function
space (i.e., the Pareto front) to guide the search for the optimum. Its cost is linear in the
number of black-boxes, and due to its expression, it can be used in a decoupled evaluation
setting in which we chose where and also what black-box (objective or constraint) to evaluate.
Our synthetic experiments show that MESMOC+ has similar performance to other state-of-
the-art acquisition functions, but it is faster to execute, simpler to implement and it is more
robust with respect to the number of samples of the Pareto front.

1 Introduction

Consider the problem of optimizing K objectives f;(x), ..., fx(x) while fulfilling C constraints
¢1(x), ..., cc(x), over a bounded input space in X ¢ R?, where d is the dimensionality of X'. For
example, we might want to maximize the speed of a robot while minimizing its energy consumption
(Ariizumi et al., 2014), and avoiding breaking any of its joints. Another example is to minimize
simultaneously the classification error and the prediction time of a deep neural network (DNN)
while the DNN is constrained to not exceeding a certain amount of memory.

In these problems, most of the times there is no single optimal point but a set of optimal points
called the Pareto set X'* (Collette and Siarry, 2004). The objective values associated to the points in
X'* constitute the Pareto front J*. All the points in X'* are optimal because they are not dominated
by any other point in X. In a minimization context, a point x; dominates x, if fi(x1) < fr(x2),
Vk € {1,..,K}, with at least one strictly minor inequality. Thus, given X'™* it is impossible to
improve the value in one objective without deteriorating the other objectives. Moreover, the points
in X* must be feasible, i.e., they must satisfy cj(x*) >0, Vx* € X*,Vj = {1, ...,C}. The potential
size of X'* is infinite, so it must be approximated by a finite set of points.

The problems described have three main characteristics. (i) There is no analytical form for
the objectives nor the constraints, i.e., the black-boxes. (ii) The evaluations may be contaminated
by noise. (iii) New evaluations are expensive in some way, e.g., economically or temporally. To
solve this type of problems while minimizing the number of evaluations, one can use Bayesian
optimization (BO) (Brochu et al., 2009). BO methods first use a model to estimate the potential
values of the black-boxes in unexplored regions of the space X'. Usually, Gaussian processes
(GPs) (Rasmussen and Williams, 2006) are the models employed (Shahriari et al., 2015). Then, an
acquisition function is used to measure the expected utility of evaluating the black-boxes at each
input point of X" given the model’s predictions. The maximizer of the acquisition function is the
next location to evaluate. This process is repeated for a fixed number of iterations. After this,
the models are optimized to obtain an approximate solution of the optimization problem. This
approach is expected to be very useful if the black-boxes are very expensive to evaluate, and the
acquisition function is very cheap to compute (Shahriari et al., 2015).
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In the context of constrained multi-objective BO problems, current acquisition functions are
divided in two groups. Adaptations of expected hyper-volume improvement (EHI) (Emmerich and
Klinkenberg, 2008), and entropy search. The hyper-volume is the space of points above the Pareto
front, assuming minimization, and is maximized by the solution of the optimization problem.
Adaptations of EHI need to deal with an intractable integral from a constrained definition of EHI.
They approximate this integral by Monte Carlo. Examples of these techniques are (Feliot et al.,
2017; Daulton et al., 2020, 2021). However, some of them have problems estimating the acquisition
function, which is zero almost everywhere after a few evaluations (Daulton et al., 2020, 2021).
Moreover, none of these methods can handle decoupled scenarios in which one chooses not only
the next point to evaluate but also what black-box to evaluate next.

PESMOC is an acquisition function of the second group (Garrido-Merchin and Hernandez-
Lobato, 2019). PESMOC approximates an intractable expression that evaluates the expected reduc-
tion in the entropy of X'*. For this PESMOC, uses expectation propagation (EP), an approximate
method that is costly and difficult to implement. MESMOC is a simpler and faster alternative to
PESMOC that is based on approximately evaluating the expected reduction in the entropy of the
Pareto front J* (Belakaria et al., 2021). Nevertheless, the approximation of MESMOC is very crude
and it simply tries to maximize each objective and constraint independently. Appendix B has more
details about this. Both PESMOC and MESMOC can deal with decoupled evaluations. {PF}2ES
is another information-based strategy that reduces the entropy of J*. It uses variational infer-
ence to approximate the mutual information and it allows for parallel evaluations. If non-parallel
evaluations are considered, {PF}2ES is outperformed by our method (Qing et al., 2022).

As an alternative to MESMOC, we provide here a more accurate approximation to the expected
reduction in the entropy of Y*. We call our method MESMOC+. At each iteration, MESMOC+
chooses to evaluate the point that is expected to reduce the most the entropy of J*. Reducing the
entropy of Y* means that more information about the solution of the problem is available, so we
are closer to finding the problem’s solution (Villemonteix et al., 2009; Hennig and Schuler, 2012).

Improved Max-value Entropy Search for Multi-objective BO with Constraints

Let D = {(xp, yn)}]r:]: | be the set of evaluations performed up to iteration N, where x,, is the point
evaluated in the n-th iteration and y,, is a vector with the values of the K+C black-boxes at x,,, i.e.,
Vn = (AXn), -5 fk(Xn), c1(Xn), --.,cc(Xn)). MESMOCH+ tries to reduce the entropy of V* after
performing an evaluation at xn.1. Therefore, MESMOC+’s acquisition function is:

a(x) = H (V*ID) - By [H (V1D U {(x y)})] M

where H (V*|D) is the entropy of the V*, given the current dataset D; H(Y*|D U {(x,y)}) is the
entropy of V* after including the new data point (x,y) in the dataset; and the expectation Ey|[-] is
calculated over the potential values for y at x, according to the GPs.

Evaluating the entropy of * is very challenging. In order to avoid this problem, we follow
(Hernandez-Lobato et al., 2016) and rewrite (1) in an equivalent form, as in (Wang and Jegelka,
2017), by noting that (1) is the mutual information between J* and y, I()*;y) (Hernandez-Lobato
et al,, 2014, 2016). Therefore, since I(V*;y) = I(y; V*), we can swap the roles of J* and y in (1)
and MESMOC+’s acquisition function becomes:

a(x) = H (yID,x) — Ey~ [H (yI D, x V*)] , 2)

where the first term of the rh.s is the entropy of the current GPs predictive distribution,
which is Gaussian. Namely, H (y|D,x) = ZIk(:l log(Zﬂev{(x))/Z + Zle log(Zﬂev;(x))/Z; and
Ey«[H (y|D, x, Y*)] is the expected entropy of the predictive distribution conditioned to J* being
the solution of the problem. This second term is intractable. To approximate the expectation we
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use Monte Carlo sampling and sample }* in an equivalent way to how Garrido-Merchan and
Hernéandez-Lobato (2019) generate samples of X'*. We explain our approach for approximating the
entropy of the conditional predictive distribution in the next section.

Approximating the Conditional Predictive Distribution

Consider first a noiseless scenario and let f = {f(x), ..., fx(x)} and ¢ = {¢;(x), ...,cc(x)}. The
expression of p(f, ¢|D, x, Y*) is obtained using Bayes’ rule:

p(f.c|D,x, V*) = Z7'p(£, c|D,x)p(V*If, ), (3)

where Z™! is a normalization constant, p(f, ¢|D, x) is the predictive distribution for the black-boxes
given D at x, and p(V*|f, ¢) is the probability that J* is a valid Pareto front given f and c. Note
that p(f, ¢|D, x) is simply a product of Gaussians given by the predictive distribution of each GP.
The factor p(V*|f, ¢) in (3) removes all configurations of the objectives and constraints values,
(f, ), that are incompatible with ))* being the Pareto front of the problem. Therefore, p(}*|f, c)
must be 0 when ¢ does not violate the constraints (i.e, ¢ does satisfy c¢j(x) > 0,Vj € {1,...,C}), and f
is not Pareto dominated by any f* € V*. Similarly, p()*|f, c) is 1 if all points f* in the Pareto front
V* dominate f, or if ¢ violates the constraints (i.e. at least one constraint is negative at x). Thus,

POIEQ) o Tpeye (1= M50 0e) T © (£ = ) & ercys QL) (@)

where ©(-) is the Heaviside step function, fi = fi(%), ¢; = c¢;j(x), f* is the k-th value of the
vector of values f* of Y* and Q(f*,f,¢) =1 — ]C:o O(cj) Hf:o ¢) (ﬁc* — fx |- Note that (4) will
be 1, if Q(f*,f,c) is 1 for all the f* in Y*. To make Q(f*,f,c) be 1, either H]C:o O(cj(x)) or
HIIS:O © (f* — fi(x)) must be 0. This happens if all the values of c are greater or equal to 0 or if all
the values of f* are lower or equal to those of f, except one which must be strictly minor.

The computation of the entropy of (3) is intractable. Therefore, we need to approximate this
distribution. Importantly, we would like the acquisition function to be cheap compared to the cost
of evaluating the black-boxes. For this reason, we use Assumed Density Filtering (ADF) (Boyen
and Koller, 1998; Minka, 2001). ADF simply approximates each non-Gaussian factor in (3) using
a Gaussian. Unlike EP, ADF refines each non-Gaussian factor only one time. Thus, ADF is faster
and simpler than EP. Since the predictive distribution of a GP is Gaussian, the only non-Gaussian
factors are the Q(f*, f, ¢) factors in (4). Recall that we assume independence among the objectives
and constraints. Since the Gaussian distribution is closed under the product operation and the
factors Q(f*, £, ¢) only involve independent Gaussian random variables, the approximation of (3)
is a factorizing Gaussian. In Appendix C we describe the specific ADF updates.

The MESMOC+ Acquisition Function

After the execution of ADF, the variances of the objectives and the constraints of the predictive
distribution at x, conditioned to the Pareto front J*, are available. Since we use ADF to approximate
Gaussian distributions to (3), the approximate entropy has a similar form to that of H(f, ¢|D, x).
Thus, our approximation of (2) is just H(f, ¢|D, x) minus entropy of p(f, ¢|D, x, *). Importantly,
however, as a consequence of the step functions, ADF tends to decrease little the variance of
approximate distributions. Therefore, when the unconditioned variance is small e.g., 107>, ADF may
reduce that variance too much e.g., 107°. If we now calculate the entropy reduction, the result will
be an acquisition value much larger than what it should be (so the acquisition function will always
tend to evaluate similar points). To solve this, we modified MESMOC+’s acquisition function to
take into account the absolute reduction in the variance instead, and ignore the log operation. Thus,
the final expression of MESMOCH+, after adding observational noise, is:

K c | MK c
a(x) ~ Z (v{ + (0{)2) + Z (Uj + (O'jc')z) M Z lz (6;: + (0{)2) * Z (5; + (U;)z)} > )

=1 j= m=1 | k=1 j=1



where M is the number of samples of }*, (0]{ )? and (GJC.)2 are the noise variances of the objectives

and constraints, respectively, U;: = vi (%), vj = 0] (%), 5£ = 5£(x|y(*m)), 0 = ~]C.(x|y(*m)) are the
variances of the predictive distribution before and after conditioning to ))*. This expression is a sum
across the objectives and constraints. Therefore, it can be used to identify what black-box to evaluate
next in a decoupled evaluation scenario. Note that the acquisition of each black box depends on the
other black-boxes (more details, in Appendix C). The cost of evaluating (5) is O(M(K + C)|V*]).

We approximate ))* using 50 points. Appendix D shows visually the computation of (5).

Experiments

We compare MESMOC+ and its decoupled variant MESMOC+4.. with BMOO (Feliot et al., 2017),
which is based on EHI, and with PESMOC, MESMOC, and random search (RANDOM). BMOO and
PESMOC are provided in the Bayesian optimization software Spearmint. We have also implemented
in that software MESMOC+ and MESMOC, closely following the code provided by Belakaria
et al. (2021). The code for MESMOC+ can be found at https://github.com/fernandezdaniel/
Spearmint. Regarding the probabilistic models, we use GPs with a Matérn52 kernel with ARD. To
maximize the acquisition function we use L-BFGS and a grid of d x 1000 points to choose a good
starting point. The gradients of the acquisition function are approximated by differences. We report
average results of each experiment after 100 repetitions. The recommendations of each method are
obtained by optimizing the means of the GPs at each iteration. To avoid recommending infeasible
solutions we follow Garrido-Merchan and Hernandez-Lobato (2019).

We consider two synthetic experiments where the underlying functions of the black-boxes
are samples from a GP. The input space of each black-box is the interval [0, 1]. We consider two
scenarios: one with noiseless observations, and another where the observations are contaminated
with standard Gaussian noise with variance 0.1. The performance of each method is measured as
the relative difference (in log-scale) of the hyper-volume of the recommendation made and the
maximum hyper-volume, as a function of the evaluations made The maximum hyper-volume is
obtained by an exhaustive search. The maximum hyper-volume is found using a grid of points.
Infeasible recommendations have an associated hyper-volume equal to 0. The first experiment has
a 4-dimensional input and the methods have to optimize 2 objectives while fulfill 2 constraints. In
this experiment, for learning the hyper-parameters of the GPs (the actual amplitude is 1 and all the
length-scales are 1) we use slice sampling with 10 samples. For each sample, MESMOC+, MESMOC
and PESMOC generate a different sample of Y*, Y* and X'*, respectively.

The first row of Figure 1 show the results of the first experiment. We observe that the best
methods are MESMOC+, PESMOC and PESMOCge.. MESMOC+,. also achieves good results
when there is no noise. In these experiments, MESMOC+ is highly superior to MESMOC, which
performs poorly in the noisy settings. MESMOC,. also performs poorly in general. This is
probably as a consequence of the poor approximation of the acquisition function in MESMOC
and MESMOC ... See Appendix E for further details. In Table 1 we display the average time in
seconds per iteration of MESMOC+, MESMOC and PESMOC and their decoupled variants in this
first experiment. We observe that the times of MESMOC+ and MESMOC+4¢,. are significantly
lower than those of PESMOC and PESMOC e, respectively, thanks to their cheaper approximation.
Regarding MESMOQ, it is just a little faster than MESMOC+ but its performance is much worse.

Wang and Jegelka (2017) show that max-value entropy search is more robust than predictive
entropy search (PES) with respect to the number of samples of the solution of the optimization
problem. We check this comparing MESMOC+ and PESMOC in the second experiment (we have
not included MESMOC in the comparison because of its bad performance). This experiment has a
6-dimensional input, 4 objectives and 2 constraints. For the robustness comparison, we sample 1,
10 and 100 times Y* and X™* for MESMOC+ and PESMOC, respectively. For learning the hyper-
parameters of the GPs (again, the actual amplitude is 1 and all the length-scales are 1.5) we maximize
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the marginal likelihood, and to avoid over-fitting we use use 20 random initial evaluations of each
black-box for each method. The second row of Figure 1 shows the results obtained. We observe a
higher robustness of MESMOC+ than PESMOC with respect to M. MESMOC+ is always better
than PESMOC;. As we increase M, the differences among them become smaller. This confirms that
MESMOCH+ is better than PESMOC+ when M is small.
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Figure 1: Average log hyper-volume relative difference between the recommendation of each method
and the maximum hyper-volume, with respect to the number of evaluations made.

Table 1: Average execution time per iteration (in sec.) in the 4D experiment.
MESMOC+  MESMOC+gee =~ MESMOC ~ MESMOC.. PESMOC  PESMOCe.
12.48+1.15 25.73+3.94 10.34+0.84 12.09+0.83 29.71+3.70 89.33+5.36

4 Conclusions

We have developed MESMOC+, a method for multi-objective Bayesian optimization with constraints.
MESMOC+ selects the next point to evaluate as the one that is expected to reduce the most the
entropy of the solution of the optimization problem in the function space (i.e. the Pareto front
V*). Since MESMOC+’s acquisition is expressed as a sum of acquisition functions, one per each
different black-box, its computational cost is linear in the number of black-boxes. Moreover, it
can be used in a decoupled evaluation setting in which one chooses not only the point at which
to evaluate the black-boxes, but also what black-box to evaluate next. MESMOC+ improves the
approximation of the acquisition function performed by MESMOC, an already existing acquisition
function targeting the reduction of the entropy of the Pareto front. Specifically, the approximation
of the acquisition function performed by MESMOC+ is more accurate than that of MESMOC. This
is translated in better optimization results. Our experiments show that MESMOC+ is competitive
with other state-of-the-art methods for BO, but MESMOCH+ is significantly faster to execute. This is
a consequence of measuring the expected reduction of the entropy of the Pareto front }* instead
of the Pareto set X'*. Moreover, MESMOC+ is more robust with respect to the number of Monte
Carlo samples of Y* needed to approximate the acquisition function. Finally, we have observed
that the decoupled variant of MESMOC+ sometimes obtains better results than the coupled variant.
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