
Automated Architecture Search for Brain-inspired
Hyperdimensional Computing

Junhuan Yang1 Yi Sheng2 Sizhe Zhang3 Ruixuan Wang3 Kenneth Foreman4

Mikell Paige4 Dayane Reis5 Xun Jiao3 Weiwen Jiang2 Lei Yang1

1Department of Electrical and Computer Engineering, University of New Mexico
2Department of Electrical and Computer Engineering, George Mason University
3Department of Electrical and Computer Engineering, Villanova University
4Department of Chemistry and Biochemistry, George Mason University
5Department of Computer Science and Engineering, University of Notre Dame

Abstract This paper represents the first effort to develop an automated architecture search framework
for hyperdimensional computing (HDC), a type of brain-inspired neural network. The
framework, named AutoHDC, fills the gap in the optimization of HDC architecture design
for given applications, which is currently carried out in an application-specific ad-hoc
manner. Automated exploration will not only push HDC to more general applications, but
also significantly diminish the heavy labor in architecture optimization for high performance
and efficiency. To enable automated exploration, we present a thorough study to formulate
the HDC architecture search space. On top of this, we apply reinforcement learning to
automatically explore the HDC architectures. AutoHDC is evaluated in case studies on
drug screening tasks in drug discovery. On the ClinTox dataset, AutoHDC can identify an
architecture that outperforms the state-of-the-art deep learning approach with 4.77% higher
ROC-AUC scores on average, and 2.26% higher scores against the manually designed HDC.

1 Introduction

Recently, brain-inspired hyperdimensional computing (HDC) has demonstrated its superiority in
different machine learning tasks in terms of robustness, scalability, and high energy efficiency (Ge
and Parhi (2020), Kanerva (2009), Thomas et al. (2021)). The main concept of HDC is to formulate
a space with a set of high-dimension orthogonal vectors, so machine learning (ML) tasks are
performed in such a space (Karunaratne et al. (2020)). Taking the classification task as an example,
each training/testing sample is represented by a hypervector (HV) in the space. By applying the
vector addition of training HVs in the same class, we obtain the HV to represent a class (called class
HV) (Joshi et al. (2016)). In the inference phase, a given testing sample is encoded to an HV and the
model searches for the class with the highest similarity to complete the task (Thomas et al. (2021)).

Similar to the neural architecture in deep neural networks (DNNs) (Yosinski et al. (2014)), HDC
is also based on a set of architecture hyperparameters, called HDC architecture. Known from
DNN applications, the customization of neural architectures can provide high performance and
efficiency. HDC architecture also needs to be customized according to the target applications in

HDC Trainer

HDC

Architecture

Optimizer

HDC

Architecture

Search Space

A BC
Update Optimizer and

Predict Hyperparameters

Generate Reward Based on

the Performance of Trained HDC

Formulate HDCArchitecture and Send to Trainer

Figure 1: An overview of AutoHDC framework

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:yangjh1993@unm.edu
mailto:ysheng2@gmu.edu
mailto:szhang6@villanova.edu
mailto:rwang8@villanova.edu
mailto:kforema@gmu.edu
mailto:mpaige3@gmu.edu
mailto:dayane.a.reis.11@nd.edu
mailto:xun.jiao@villanova.edu
mailto:wjiang8@gmu.edu
mailto:leiyang@unm.edu
https://creativecommons.org/licenses/by/4.0/

different domains (Osipov et al. (2021), Neubert et al. (2019)). However, current HDC architectures
are manually designed, which brings a high design cost, and in turn greatly limits the generality of
HDC (Khan et al. (2021); Duan and Xu (2021)).

To enable the customization of HDC for different applications, the automation of HDC archi-
tecture will be the key. In the customization of DNNs, the automated ML (AutoML), in particular
neural architecture search (NAS), has achieved great success (Zoph and Le (2016), Elsken et al.
(2019)). It seems straightforward to apply the NAS to explore the HDC architecture. However, the
fundamentally different computing schemes between HDC and DNN bring new challenges. More
specifically, it is unclear what is the search space of the HDC architecture.

To the best of our knowledge, this is the first work to conduct an automated architecture search
for HDC. We proposed a holistic framework, namely AutoHDC, to carry out the exploration, as
shown in Figure 1. Through a thorough analysis of all operations in HDC, AutoHDC first constructs
the fundamental search space in the design of the HDC architecture. On top of the search space,
given an application, a reinforcement learning based search optimization is devised to automatically
explore the best HDC architecture. Case studies on a series of drug discovery applications are
conducted. Results show that our proposed AutoHDC can outperform DNNs and the existing
manually designed HDC architectures.

2 Automated Architecture Search for Hyperdimensional Computing Framework

Figure 1 shows the overview of the AutoHDC framework, which comprises three components:
A⃝ an HDC Trainer to evaluate the identified HDC architecture; B⃝ the HDC Architecture Search
Space to formulate the searchable hyperparameters; C⃝ an HDC Architecture Optimizer to control
the search process. The optimization is iteratively conducted. In the following of this section, we
introduce each component in details using a drug discovery classification task.

2.1 HDC Trainer
We first present the details of the trainer, as shown in Figure 2. It provides insights into what
hyperparameters are searchable in HDC computing. Specifically, the trainer is composed of 4
phases: input, encoding, training, and output.

In “Phase 1”, AutoHDC represents the molecules with Simplified Molecular-Input Line-Entry
System (SMILES), which is used to describe chemicals’ three-dimensional structure as a string.

In “Phase 2”, there are further 4 steps to convert the input to an HV as shown in Figure 2. At
step ①, each SMILES string is broken down into sub-strings of length 𝑁 , and this method is called
𝑁 -𝑔𝑟𝑎𝑚 (Cavnar et al. (1994), Kondrak (2005)). As the example shown in the figure, the length
𝑁 = 3, indicating that each gram has 3 characters, say “[𝑁+” being the first, and “𝑁+]” being the
second. At step ②, a unique base HV will be randomly generated for each character. For example,
the notation “[” corresponds to 𝐻𝑉[. In the next step ③, we use different rotation shifts to describe
the appearance order of a character. For example, let 𝐻𝑉𝑁 be the HV to represent character 𝑁 . In
sub-unit “[𝑁+” and “𝑁+]”, 𝑁 is at different positions. The basic idea is that the same char (i.e., 𝑁 in

A

...

C(=[NH2+])(N)N

[N+](=O)([O-])[O-]

[O-]P(=O)([O-])F

C(=C(F)F)(F)F

C1=C(C(=O)NC(=O)
N1)F

C1CC(C1)(C(=O)O)C
(=O)O.N.N.[Pt]

C1=NC2=C(N1)C(=S
)N=CN2

CC(=O)OC1=CC=CC
=C1C(=O)O

Class 0

Class 1

...

Class0 HV

Class1 HV

+

+

+

HV

HV

HV

HV

HV

HV

HV

HV

+

+

+

...

HV Classes

[N+](=O)([O-])[O-]

1 RS

[HV[

N

+

HVN

HV+

R2([)

R0(+)

HV[

HVN

HV+

[N+ HV[N+

· · ·

· · ·

· · ·

· · ·

N+] HVN+]· · ·

Genera on

Break Down Strings

· · ·

Rota on Binding

Superposing

Encoded HVs Outpu ng

class HVs

O-] HVO-]· · ·

+

+ HV[N+](=O)([O-])[O-]

Phase 1

Input

Phase 2

Encoding

Phase 3

Training

Phase 4

Output

2 RS

R1(N)

N-Gram Size: 3

Figure 2: AutoHDC: 4-Phase Trainer

2

B Proper es or Opera ons Op ons

N-Gram Size 1,2,3,4,5,6

Base HV Dimension 1k, 2k, …, 20k

Base HV Sparsity 10%,20%,…,90%

Base HV Type binary, bipolar

Proper es or Opera ons Op ons

Rota on Shi! (RS) 0,1,2,3,4,5,6,7

Element-wise Opera on *,XOR,OR,AND

Encoded HV Type binary, bipolar, int8, int16, 32int, int64

Class HV Type binary, bipolar, int8, int16, 32int, int64

Step Step

Figure 3: AutoHDC Search Space: hyperparameters in HDC and their possible options

the above example) at the different positions should have similarities but should not be exactly the
same. So, we will perform 1 rotation step for 𝐻𝑉𝑁 in “[𝑁+” while 2 rotation steps for “𝑁+]”. Let 𝑖
be the step for each rotation, it is relative to the 𝑁 − 𝑔𝑟𝑎𝑚 𝑠𝑖𝑧𝑒 . And the rotation shift (RS) may
not be stable. Specifically, the 𝑖 − 𝑡ℎ character in the string should rotate (𝑁 − 𝑖) * 𝑅𝑆 elements. At
step ④, after rotation, an element-wise operation will be carried out, which is called binding (Khan
et al. (2021)). Binding is used to associate two HVs. Traditional HDC usually uses element-wise
production to produce the resultant HV. Here, we may have other operations (e.g, XOR) to bind
two HVs. After binding, the mathematical operation accumulates all the HVs resulting from the
element-wise operation in one sub-unit (e.g., “[𝑁+”). We also call this process “Superpose”.

In “Phase 3”, we get the HVs after encoding, also called encoded HVs which represent SMILES
strings (e.g., “[N+](=O)([O-])[O-]”). At step ⑤, we specify the datatype of the encoded HVs to build
up the model. The “Superpose” in “Phase 3” accumulates each encoded HV in the same class.

In “Phase 4”, the results of “Superpose” in “Phase 3” formulate the class HVs. At step ⑥, similar
with step ⑤, we need to specify the datatype of class HVs to build up the model, which will be
stored in the associative memory.

2.2 HDC Architecture Search Space
We formulate the search space, as shown in Figure 3, according to the detailed analysis of steps (①
to ⑥) in the previous subsection. Throughout the entire process of HDC trainer, there are 8 kinds
of HV properties or operations during the 6 steps.

At step ①, the size of 𝑁 -𝐺𝑟𝑎𝑚 can be varied, that is, 𝑁 is a hyperparameter. In the example,
we set the search range of 𝑁 from 1 to 6. At step ②, the process of base HV has 3 properties. First,
the dimension of the base HV is a hyperparameter . Note that, once the base HV dimension is
selected, the dimension of all of the HVs in this model will be consistent. In the example (Figure
3), the dimension ranges from 1000 to 20000 with step 1000. Second, the sparsity (i.e., the number
of 1 in HV) is a hyperparameter. In traditional HDC, the value is fixed at 50%(Ma and Jiao (2021)).
However, the fixed sparsity may not produce the best outcome. In AutoHDC, we provide the
flexibility on sparsity, ranging from 10% to 90% with step 10%. Last, the datatype of the base HV is
a hyperparameter, which can be in binary, consisting of “0” and “1”, or bipolar format, consisting of
“-1” and “1”. At step ③, every HV rotates (𝑁 − 𝑖) × 𝑅𝑆 elements, where 𝑖 is the appearance order
in the substring and 𝑅𝑆 is a hyperparameter, representing the rotation shift. In the example, 𝑅𝑆
is set in a range from 0 to 7, where 0 means all HVs do not need to be rotated. At step ④, the
type of element-wise operation is a hyperparameter. It is used to bind two HVs. In the example,
we set 4 choices: 1) element-wise multiplication, 2) element-wise XOR, 3) element-wise AND, 4)
element-wise OR. At step ⑤, we can specify the different datatype of encoded HVs. Unlike the base
HV, the encoded HV datatype has more options (binary, bipolar, int8, int16, int32, and int64). Last,
at step ⑥, we get the class HV. Similar to the encoded HVs, we can specify the class HV datatype
as binary, bipolar, int8, int16, int32, and int64.

2.3 HDC Architecture Optimizer
Several optimizers can be used in the framework, like reinforcement learning and metaheuristic.
The optimizer chooses the options from the search space for HDC trainer, and updates according
to the reward from the trainer. Here in our tasks, the drug discovery datasets are much more likely
to be imbalanced, so it is not effective to use accuracy as a metric to evaluate the performance of

3

Table 1: (Average) ROC-AUC scores of various approaches on ClinTox, BBBP, SIDER and BACE datasets

Models ClinTox BBBP SIDER BACE
Smi2Vec-BiGRU (Lin et al. (2020)) 0.978 0.946 0.607 0.854
Smi2Vec-LSTM (Quan et al. (2018)) - 0.876 0.530 0.814
D-MPNN (Yang et al. (2019); Swanson (2019)) 0.898 0.932 0.655 -
MoleHD(Ma and Jiao (2021)) 0.982 0.916 0.568 0.662
AutoHDC 0.995 0.959 0.661 0.872

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A
U
C
-R
O
C
S
co
re

Tasks in SIDER

LSTM Bigru MoleHD AutoHDC

Figure 4: ROC-AUC scores of every task in SIDER.

models. Instead, receiver operating characteristics (ROC) curves and ROC Area-under-curve (AUC)
scores are commonly used for binary and imbalanced datasets. Moreover, it is also suggested by
widely used benchmark datasets along with the majority of literature (Wu et al. (2018); Ramsundar
et al. (2019)). So, in this specific case, we use the ROC-AUR score as the reward.

3 Experiments

We employ 4 drug discovery datasets, including ClinTox (Gayvert et al. (2016)), BBBP (Martins
et al. (2012)) , SIDER (Kuhn et al. (2016)), and BACE (Subramanian et al. (2016)), for performance
evaluation. The stratified random splitting method is used to separate the datasets into 80%,
10%, and 10% to build the training, validation, and test sets, respectively. For each dataset, the
framework will run 500 episodes to search for the best models. In each episode, each candidate
HDC architecture will run 20 iterations and thus will be evaluated 20 times with the randomly
generated base HVs. We use the average score of 20 iterations to avoid the good result produced
by a specific seed. We evaluate the performance of the AutoHDC by comparing it with a set of
state-of-the-art methods, including D-MPNN (Yang et al. (2019); Swanson (2019)), MoleHD (Ma
and Jiao (2021)), Smi2Vec-LSTM (Quan et al. (2018)) and Smi2Vec-BiGRU(Lin et al. (2020)).

Table 1 shows the ROC-AUC results of the test set (“-” means the data is unavailable). Results
show that our proposed AutoHDC framework can identify the model with the highest score for all
4 datasets. The model identified by AutoHDC can achieve a ROC-AUC score of 0.995 on ClinTox
(average score for 2 tasks), which has improved the score at most 10.8%. On BBBP, the model
searched by AutoHDC achieves a 0.959 score and improves the score by at least 1.37% and up to
9.47% compared with competitors. As well on SIDER (average score for 27 tasks), AutoHDC can
achieve a score of 0.661. On the BACE dataset, the model found by AutoHDC with a score of 0.872
(at least 2.10% and up to 31.7% improvement), dominates other models.

Figure 4 shows the ROC-AUC scores of each task in the SIDER dataset (detailed results see
Appendix A.3). We can see that, on 20 out of 27 tasks, the models identified by AutoHDC achieve
the best scores. For the remaining 7 tasks (the last 7 tasks in the figure), AutoHDC can even identify
the models with the second-best score for 6 tasks and the third-best score for 1 task, where the
scores are close to the highest one. Overall, AutoHDC can obtain the leading scores, which show
the competitiveness among other model candidates.

Combining all evaluation results, our proposed AutoHDC framework has been verified to be
effective to find models with the best performance for drug discovery datasets compared with
state-of-the-art approaches.

4

References

Cavnar, W. B., Trenkle, J. M., et al. (1994). N-gram-based text categorization. In Proceedings of
SDAIR-94, 3rd annual symposium on document analysis and information retrieval, volume 161175.
Citeseer.

Duan, S. and Xu, X. (2021). Hdcog: A lightweight hyperdimensional computing framework
with feature extraction. In 2021 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), pages 1–6. IEEE.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. The Journal of
Machine Learning Research, 20(1):1997–2017.

Gayvert, K. M., Madhukar, N. S., and Elemento, O. (2016). A data-driven approach to predicting
successes and failures of clinical trials. Cell chemical biology, 23(10):1294–1301.

Ge, L. and Parhi, K. K. (2020). Classification using hyperdimensional computing: A review. IEEE
Circuits and Systems Magazine, 20(2):30–47.

Joshi, A., Halseth, J. T., and Kanerva, P. (2016). Language geometry using random indexing. In
International Symposium on Quantum Interaction, pages 265–274. Springer.

Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors. Cognitive computation, 1(2):139–159.

Karunaratne, G., Le Gallo, M., Cherubini, G., Benini, L., Rahimi, A., and Sebastian, A. (2020).
In-memory hyperdimensional computing. Nature Electronics, 3(6):327–337.

Khan, A. A., Ollivier, S., Longofono, S., Hempel, G., Castrillon, J., and Jones, A. K. (2021). Brain-
inspired cognition in next generation racetrack memories. arXiv preprint arXiv:2111.02246.

Kondrak, G. (2005). N-gram similarity and distance. In International symposium on string processing
and information retrieval, pages 115–126. Springer.

Kuhn, M., Letunic, I., Jensen, L. J., and Bork, P. (2016). The sider database of drugs and side effects.
Nucleic acids research, 44(D1):D1075–D1079.

Lin, X., Quan, Z., Wang, Z.-J., Huang, H., and Zeng, X. (2020). A novel molecular representation
with bigru neural networks for learning atom. Briefings in bioinformatics, 21(6):2099–2111.

Ma, D. and Jiao, X. (2021). Molehd: Automated drug discovery using brain-inspired hyperdimen-
sional computing. arXiv e-prints, pages arXiv–2106.

Martins, I. F., Teixeira, A. L., Pinheiro, L., and Falcao, A. O. (2012). A bayesian approach to in
silico blood-brain barrier penetration modeling. Journal of chemical information and modeling,
52(6):1686–1697.

Neubert, P., Schubert, S., and Protzel, P. (2019). An introduction to hyperdimensional computing
for robotics. KI-Künstliche Intelligenz, 33(4):319–330.

Osipov, E., Kahawala, S., Haputhanthri, D., Kempitiya, T., De Silva, D., Alahakoon, D., and Kleyko,
D. (2021). Hyperseed: Unsupervised learning with vector symbolic architectures. arXiv preprint
arXiv:2110.08343.

5

Quan, Z., Lin, X., Wang, Z.-J., Liu, Y., Wang, F., and Li, K. (2018). A system for learning atoms based
on long short-term memory recurrent neural networks. In 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pages 728–733. IEEE.

Ramsundar, B., Eastman, P., Walters, P., and Pande, V. (2019). Deep learning for the life sciences:
applying deep learning to genomics, microscopy, drug discovery, and more. O’Reilly Media.

Subramanian, G., Ramsundar, B., Pande, V., and Denny, R. A. (2016). Computational modeling of
𝛽-secretase 1 (bace-1) inhibitors using ligand based approaches. Journal of chemical information
and modeling, 56(10):1936–1949.

Swanson, K. (2019). Message passing neural networks for molecular property prediction. PhD thesis,
Massachusetts Institute of Technology.

Thomas, A., Dasgupta, S., and Rosing, T. (2021). Theoretical foundations of hyperdimensional
computing. Journal of Artificial Intelligence Research, 72:215–249.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K., and
Pande, V. (2018). Moleculenet: a benchmark for molecular machine learning. Chemical science,
9(2):513–530.

Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., Guzman-Perez, A., Hopper, T., Kelley,
B., Mathea, M., et al. (2019). Are learned molecular representations ready for prime time? arXiv
preprint arXiv:1904.01561.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural
networks? Advances in neural information processing systems, 27.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

6

A Appendix

A.1 AutoHDC Training, Retraining and Interence

The input data has been split into training, validation, and testing data. The training data is used
to train the HDC model in "Phase 3" and "Phase 3", and the validation data is used to validate
the model and perform rewards to update the controller, while the test data is used to test the
performance of the model. We use an example to illustrate the HDC process and give the details of
training, retraining and inference in this section.

A.1.1 Training. The randomly generated base HVs which use a seed are stored in the item memory. The
item memory contains base HVs (

−→
𝐵) with the same number of characters ever shown in the input.

We denote the base HVs as B = {
−→
𝐵1,

−→
𝐵2, ...,

−→
𝐵𝑖 , ...,

−→
𝐵𝑚} where the

−→
𝐵𝑖 represents the base HV with

index 𝑖 and𝑚 represents the number of input unique characters. Thus, at steps ① and ②, every
string can be encoded into a set of HVs.

Specifically, at step ④ (binding), there are 4 choices to bind 2 HVs in AutoHDC: 1) element-
wise multiplication (donated as ∗), 2) element-wise XOR (donated as 𝑋𝑂𝑅), 3) element-wise AND
(donated as 𝐴𝑁𝐷), 4) element-wise OR (donated as 𝑂𝑅). In these operations, we denote the first
HV as

−→
𝐻𝑃 = {

−−−−→
𝐻𝑝 (1) ,

−−−−→
𝐻𝑝 (2) , ...,

−−−−→
𝐻𝑝 (𝑖) , ...,

−−−−→
𝐻𝑝 (𝑑) } and the second HV as

−−→
𝐻𝑄 = {

−−−−→
𝐻𝑞 (1) ,

−−−−→
𝐻𝑞 (2) , ...,

−−−−→
𝐻𝑞 (𝑖) ,

...,
−−−−→
𝐻𝑞 (𝑑) }. Equation (1)-(4) show the 4 element-wise operations for 2 HVs. Here, we re-define the

element-wise operation results for bipolar data. Table 2 shows the results of the element-wise
operations for binary and bipolar data by using our method.

After encoding, at step ⑤, we refer to these hypervectors for unit strings (e.g., “[N+](=O)([O-
])[O-]”) as encoded HVs, denoted as

−→
𝐸 . Training is the process of establishing the original associative

memory which includes specific HV for each class relative to the training data. We call the class
HVs in associative memory class HVs, denoted as C = {

−→
𝐶1,

−→
𝐶2, ...,

−→
𝐶 𝑗 , ...,

−→
𝐶𝑐 }, where 𝑗 and 𝑐 represent

the class label. Each training encoded HV
−→
𝐸𝑘 is added to the corresponding class HV

−→
𝑅 𝑗 according

to its label.

A.1.2 Retraining. The original associative memory after training is sufficient for some scenarios, however,
retraining can help to further improve HDC performance. Retraining is a process to fine-tune
the class HVs using the encoded HVs

−→
𝐸 . The original associative memory is used to predict the

corresponding label of one encoded HV
−→
𝐸𝑘 . If the prediction is not correct, the relative class HV

does not show or does not contain the correct information. Thus, as formulated in Equation (5, 6),
the class HV with the prediction label (

−→
𝐶𝑝) should subtract the

−→
𝐸𝑘 , and the class HV (

−→
𝐶𝑡) with the

true label should be added with
−→
𝐸𝑘 .

A.1.3 Inference. The validation or testing data is used to evaluate the performance of the model after
training and retraining. The process of encoding these data to encoded HVs

−→
𝐸 is the same as the

−→
𝐻𝑃 ∗ −−→

𝐻𝑄 = {−−−−→𝐻𝑝 (1) ∗ −−−−→
𝐻𝑞 (1) ,

−−−−→
𝐻𝑝 (2) ∗ −−−−→

𝐻𝑞 (2) , ...,
−−−−→
𝐻𝑝 (𝑖) ∗ −−−−→

𝐻𝑞 (𝑖) , ...,
−−−−→
𝐻𝑝 (𝑑) ∗ −−−−→

𝐻𝑞 (𝑑) } (1)

−→
𝐻𝑃 𝑋𝑂𝑅

−−→
𝐻𝑄 = {−−−−→𝐻𝑝 (1) 𝑋𝑂𝑅

−−−−→
𝐻𝑞 (1) ,

−−−−→
𝐻𝑝 (2) 𝑋𝑂𝑅

−−−−→
𝐻𝑞 (2) , ...,

−−−−→
𝐻𝑝 (𝑖) 𝑋𝑂𝑅

−−−−→
𝐻𝑞 (𝑖) , ...,

−−−−→
𝐻𝑝 (𝑑) 𝑋𝑂𝑅

−−−−→
𝐻𝑞 (𝑑) }

(2)
−→
𝐻𝑃 𝐴𝑁𝐷

−−→
𝐻𝑄 = {−−−−→𝐻𝑝 (1) 𝐴𝑁𝐷

−−−−→
𝐻𝑞 (1) ,

−−−−→
𝐻𝑝 (2) 𝐴𝑁𝐷

−−−−→
𝐻𝑞 (2) , ...,

−−−−→
𝐻𝑝 (𝑖) 𝐴𝑁𝐷

−−−−→
𝐻𝑞 (𝑖) , ...,

−−−−→
𝐻𝑝 (𝑑) 𝐴𝑁𝐷

−−−−→
𝐻𝑞 (𝑑) }

(3)
−→
𝐻𝑃 𝑂𝑅

−−→
𝐻𝑄 = {−−−−→𝐻𝑝 (1) 𝑂𝑅

−−−−→
𝐻𝑞 (1) ,

−−−−→
𝐻𝑝 (2) 𝑂𝑅

−−−−→
𝐻𝑞 (2) , ...,

−−−−→
𝐻𝑝 (𝑖) 𝑂𝑅

−−−−→
𝐻𝑞 (𝑖) , ...,

−−−−→
𝐻𝑝 (𝑑) 𝑂𝑅

−−−−→
𝐻𝑞 (𝑑) } (4)

7

−→
𝐶𝑝 =

−→
𝐶𝑝 −

−→
𝐸𝑘 (5)

−→
𝐶𝑡 =

−→
𝐶𝑡 +

−→
𝐸𝑘 (6)

Table 2: Truth table for binary and bipolar data when doing element-wise operation

Mult. 1 0 XOR 1 0 AND 1 0 OR 1 0
1 1 0 1 0 1 1 1 0 1 1 1
0 0 0 0 1 0 0 0 0 0 1 0

Mult. 1 -1 XOR 1 -1 AND 1 -1 OR 1 -1
1 1 -1 1 -1 1 1 1 -1 1 1 1
-1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1

process of encoding training data. The encoded HVs which are used to do inference are also called
query HVs (

−→
𝑄). The hamming similarity or cosine similarity is then calculated between a query HV

−→
𝑄𝑙 and each class HV

−→
𝐶 𝑗 in associative memory. The result of the largest similarity,(e.g., resulting

from
−→
𝑄𝑙 and

−→
𝐶 𝑗), shows that

−→
𝐶 𝑗 is the most similar class HV of the query HV

−→
𝑄𝑙 . Thus, the model

predicts the query HV
−→
𝑄𝑙 is most likely to have the same label as that of the class hypervector

−→
𝐶 𝑗 .

The process of getting the largest similarity between a query HV
−→
𝑄𝑙 and each class HV

−→
𝐶 𝑗 is also

called similarity search.

A.2 Details of Datasets

The 4 employed drug discovery datasets include ClinTox (Gayvert et al. (2016)), BBBP (Martins et al.
(2012)), SIDER (Kuhn et al. (2016)) and BACE (Subramanian et al. (2016)) (2 binary classification
tasks on ClinTox, 1 binary classification task on BBBP and BACE, 27 binary classification task on
SIDER).
• ClinTox (Gayvert et al. (2016)): The dataset includes two classification tasks for 1491 drug
compounds with known binary chemical structures: (1) clinical trial toxicity and (2) FDA approval
status. In our experiment, we concentrate on the task of clinical trial toxicity.

• BBBP (Martins et al. (2012)): The dataset contains 2052 drug compounds with the corresponding
binary label (positive or negative) of permeability to the blood-brain barrier.

• SIDER(Kuhn et al. (2016)): The dataset contains 1428 marketed drugs corresponding to adverse
drug reactions (ADR) in 27 individual tasks per MedDRA classifications with the positive (active)
or negative (inactive) label of classifying the relationship between the drug compound and the
ADR disorders of system organs.

• BACE(Subramanian et al. (2016)): The dataset provides quantitative (IC50) and qualitative (binary
label) binding results for a set of inhibitors of human 𝛽-secretase 1 (BACE-1). The dataset contains
1522 compounds with binary labels, built as a classification task.

8

A.3 Details of Experiment results on SIDER

Table 3: ROC-AUC scores of every task in SIDER

Task Name Smi2Vec-LSTM Smi2Vec-BiGRU MoleHD AutoHDC
Product issues 0.5048 0.5662 0.6296 0.7602
Endocrine disorders 0.5323 0.5873 0.4842 0.7543
Neoplasms benign, malignant and
unspecified (incl cysts and polyps) 0.5396 0.5818 0.6400 0.7393

Eye disorders 0.5087 0.6044 0.6484 0.7186
Reproductive system
and breast disorders 0.5956 0.6061 0.6392 0.7152

Musculoskeletal and connective
tissue disorders 0.5620 0.5533 0.5834 0.6593

Pregnancy, puerperium
and perinatal conditions 0.4961 0.5164 0.4422 0.6145

Blood and lymphatic
system disorders 0.5408 0.6000 0.6480 0.6950

Cardiac disorders 0.5734 0.5918 0.6077 0.6822
General disorders and
administration site conditions 0.4929 0.5884 0.5147 0.6741

Nervous system disorders 0.5147 0.7350 0.6104 0.8135
Immune system disorders 0.5248 0.5770 0.5211 0.6482
Congenital, familial and
genetic disorders 0.5000 0.6084 0.6168 0.6767

Gastrointestinal disorders 0.5564 0.6629 0.6255 0.7278
Vascular disorders 0.5011 0.5303 0.5066 0.5949
Hepatobiliary disorders 0.5843 0.6504 0.6402 0.7088
Respiratory, thoracic and
mediastinal disorders 0.4954 0.6250 0.5901 0.6611

Psychiatric disorders 0.5378 0.5861 0.6007 0.6166
Ear and labyrinth disorders 0.5012 0.6395 0.5754 0.6673
Metabolism and nutrition disorders 0.5345 0.5998 0.5114 0.6159
Renal and urinary disorders 0.5767 0.6173 0.6196 0.6137
Investigations 0.5045 0.6674 0.5522 0.6430
Surgical and medical procedures 0.4960 0.5642 0.5071 0.5359
Skin and subcutaneous
tissue disorders 0.5642 0.6683 0.5463 0.6350

Social circumstances 0.5170 0.6089 0.5452 0.5716
Injury, poisoning and
procedural complications 0.5315 0.5943 0.4306 0.5406

Infections and infestations 0.5148 0.6621 0.5002 0.5696
Average Score 0.5297 0.6071 0.5680 0.6612

9

	Introduction
	Automated Architecture Search for Hyperdimensional Computing Framework
	HDC Trainer
	HDC Architecture Search Space
	HDC Architecture Optimizer

	Experiments
	Appendix
	AutoHDC Training, Retraining and Interence
	Training
	Retraining
	Inference

	Details of Datasets
	Details of Experiment results on SIDER

