
ALBench: A Framework for Evaluating Active Learning in
Object Detection

Zhanpeng Feng1 Shiliang Zhang2 Rinyoichi Takezoe2 Wenze Hu1

Manmohan Chandraker3 Li-Jia Li4 Vijay K. Narayanan5 Xiaoyu Wang1

1Lighthouse
2School of Computer Science, Peking University
3University of California, San Diego
4Stanford University
5ServiceNow

Abstract Active learning is an important technology for automated machine learning systems. In
contrast to Neural Architecture Search (NAS) which aims at automating neural network
architecture design, active learning aims at automating training data selection. It is especially
critical for training a long-tailed task, in which positive samples are sparsely distributed.
Active learning alleviates the expensive data annotation issue through incrementally training
models powered with efficient data selection. Instead of annotating all unlabeled samples,
it iteratively selects and annotates the most valuable samples. Active learning has been
popular in image classification, but has not been fully explored in object detection. Most
of current approaches on object detection are evaluated with different settings, making it
difficult to fairly compare their performance. To facilitate the research in this field, this paper
contributes an active learning benchmark framework named as ALBench for evaluating
active learning in object detection. Developed on an automatic deep model training system,
this ALBench framework is easy-to-use, compatible with different active learning algorithms,
and ensures the same training and testing protocols. We hope this automated benchmark
system help researchers to easily reproduce literature’s performance and have objective
comparisons with prior arts. The code will be release through Github1.

1 Introduction and Background

An automated machine learning system involves multiple components, including automated model
design, training data selection, etc. Currently, a large body of works focus on the model design.
Related works include neural architecture search, meta-learning, and hyper-parameter optimization,
etc. The research on the other component, i.e., automated data selection has not been as intensive. It
is partially attributed to the complication of performance evaluation. The resulting model output by
amodel design strategy can be easily evaluated using standard classification/detection/segmentation
datasets, following commonly used training/testing paradigms without any ambiguity. Differently,
the data automation process could involve sampling strategies with extra setups, such as the
number of initial training samples, the number of samples added in each iteration, when to stop,
etc. Unfortunately, different works propose different practices which makes direct apple-to-apple
comparison difficult. It obviously does not benefit the prosperity of the community.

Active learning is one of the most important techniques for data selection automation. It (Ko-
vashka et al., 2016; Li et al., 2007; Grauman and Belongie, 2014) has been proposed to address the
challenge of expensive data annotation encountered by AI models, especially deep models (He
et al., 2016). Instead of annotating every sample available and training the model all at once, active

1https://github.com/industryessentials/ymir

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:zpfeng.cs@gmail.com
mailto:slzhang.jdl@pku.edu.cn
mailto:takezoe@pku.edu.cn
mailto:windsor.hwu@gmail.com
mailto:manu.chandraker@gmail.com
mailto:lijiali@cs.stanford.edu
mailto:vijay_k_narayanan@hotmail.com
mailto:fanghuaxue@gmail.com
https://creativecommons.org/licenses/by/4.0/


Method Training Set Initial Size Added Size Stop Size Testset

Aghdam et al. (2019)
Caltech Pedestrian,

CityPersons,
BDD100K

500 500 7.5K Caltech Pedestrian testset

Haussmann et al. (2020) self collected 100K 200K 700K self collected
Yoo and Kweon (2019) VOC07, VOC12 1K 1K 10K VOC07 testset

VOC07, VOC12 1K 1K 10K VOC07 testset
Choi et al. (2021) VOC07 2K 1K 4K VOC07 testset

COCO14 5k 1k 7k COCO17 VAL
VOC12 500 200 3.5K VOC12 testset

Kao et al. (2018) VOC07 500 200 3.5K VOC07 testset
COCO14 5K 1K 9K COCO14 val

Feng et al. (2019) KITTI 1K 200 12K KITTI self-divided
Brust et al. (2018) VOC12 50 50 250 VOC12 self-divided

VOC07 500 500 3.5K VOC07 testset
Yu et al. (2021) VOC12 500 500 3.5K VOC12 testset

COCO14 5K 1K 9K COCO14 VAL
Roy et al. (2018) VOC07, VOC12 1655 827 7447 VOC07 testset
Yuan et al. (2021) VOC07, VOC12 827 413 3.31K VOC07 testset

COCO14 2340 2340 11.7K COCO14 VAL

Table 1: Training and testing setups utilized in active learning works for object detection, where
“Added Size” denotes the number of selected samples at each iteration. The training stops
when the size of augmented training set reaches the “Stop Size”. It shows that current methods
employ various benchmark setups which prevents objective comparison among them.

learning trains models in multiple steps. Each step tends to select and annotate a small portion
of samples, which are most valuable for subsequent performance enhancement. Combined with
incremental learning (Kading et al., 2016), active learning has shown great potentials in image
classification, e.g., it significantly reduced the annotation cost (60%) while achieving performance
on par with that of using full data (Caramalau et al., 2021). Given the fact that academic datasets
used for evaluating active learning have been dedicatedly prepared with sample selection and noise
filtering, the improvement from active learning could be even more substantial for open world
scenarios, which commonly contain more noises and redundancies.

Research on active learning for object detection has not been as popular as that for image
classification. This is partially because it involves more training setups than traditional learning
strategies, making the algorithm implementation, repeat, and comparison difficult. Besides that,
existing active learning algorithms for detection follow different evaluation paradigms, making
their performance not directly comparable. We summarize the training and test setups in existing
works in Table 1. The listed studies could use:
i) different datasets. The algorithm proposed by Yoo and Kweon (2019) is only evaluated on the
PASCAL VOC (Everingham et al., 2010), and is not tested on the COCO dataset (Lin et al., 2014).
Some approaches are tested on autonomous driving datasets, rather than object detection datasets.
ii) different initialization settings. Both Yoo and Kweon (2019) and Kao et al. (2018) adopt the
PASCAL VOC dataset, but use different number of samples in their initial training sets.
iii) different sampling settings for each iteration. The method (Haussmann et al., 2020) selects
200k images at each training step, substantially more than those determined by others (Yoo and
Kweon, 2019). Introducing more samples helps to boost the performance, but leads to higher cost.
iv) different stop criteria. (Yuan et al., 2021) and (Yu et al., 2021) end up with 11.7K and 9K training
samples, respectively. Stopping with more data definitely benefits the final performance.

2



Initial(iter0) iter1 iter2 Stop(iterN)

…

AL AL …

…

AL

Train Train Train

YMIR Automated Training System

Perf0

Labeled Data Mined Data Raw Data

Train

Automated Evaluation System

…Perf1 Perf2 PerfN

Figure 1: Illustration of active learning procedure implemented by ALBench based on YMIR (Huang
et al., 2021), where “AL” denotes the active learning model provided by authors. “Train”
denotes the training action using the augmented training data, each training action typically
produces a model. The automated evaluation system collects all the models obtained from
training actions in each iteration and produces performance profiling for the corresponding
model (Perf0, Perf1, etc.). The comprehensive profiling results are used to compare with those
of other methods, and generate the leaderboard accordingly. The whole process is automatic
once the author provides the training and active learning code for a single iteration.

As the performance of active learning is closely related to both training and test settings, those
observations motivated us to construct a benchmark framework for the community that is easy to
reproduce and fairly compare the performance of different algorithms. To this end, we contribute a
public benchmark framework named ALBench constructed based on our automated deep model
training system called YMIR (Huang et al., 2021). YMIR could automatically train deep models on
given training samples. Based on YMIR, ALBench implements an incremental training pipeline,
which first trains initial detection models on a small annotated training set, then iteratively selects
samples using active learning models. Selected samples at each step are adopted for updating deep
models and active learning models with YMIR. As illustrated in Fig. 1, this procedure is iteratively
repeated by ALBench until the stop criterion of active learning is met.

ALBench is a plug-and-play framework. The compatibility of various active learning algorithms
with ALBench is implemented through docker images which package active learning models to fit
into our training and mining framework. Within ALBench, different active learning algorithms
share the same training and testing setups. We illustrate the training and testing procedures in
Fig. 2, which effectively ensure an objective comparison among different active learning algorithms.
Moreover, it is straightforward to study the model behavior using different settings once the related
training and active learning docker images are provided. Performance on a setting can be obtained
even the original work did not explore the corresponding study. We believe those characteristics of
the proposed system will facilitate the research for the active learning community.

2 Benchmark Framework Design

Overview: Fig. 2 presents the framework of ALBench, which is composed of three components
including the Input Interface, Training with Active Learning, and Evaluation, respectively. ALBench
incrementally trains object detection models with augmented training sets obtained from the active
learning process, and compares their object detection performance. ALBench is constructed based
on the automated deep model training system called YMIR (Huang et al., 2021).

3



YMIR

AL

Evaluation

Labeled data

Training 

Docker Image 

Training

Labeled data

AL Docker 

Image

Model

AL 

instantiation

instantiation

Sample 

Ranks

Authors’ Code

ALBench

Evaluation Training with Active Learning

LeaderBoard

Performance 

Update
Unlabeled 

data

Default Detectors

Figure 2: Illustration about how authors interact with ALBench as well as detailed process of perform-
ing the benchmark. Authors’ Code: Implementation provided by authors. Training with
Active Learning: Model training powered by YMIR with the provided model training code
and the active learning code. Evaluation: Performance evaluation for the resulting model as
well as all intermediate models. The brown arrows show the looping training cycle.

Open Interface: The open interface (right blue box in Fig. 2) defines how the users interact
with the benchmark system. It defines protocols for packaging active learning algorithms into AL
Docker Images, which are hence hosted by YMIR to run sample selection. Some active learning
methodologies are highly coupled with specific detector architectures. ALBench allows the users
to provide their own object detection training code through a docker image. The docker image
will replace the standard training methodology in YMIR to train object detectors and update active
learning models. It is fairly simple for using the benchmark system.

Training with Active Learning module takes docker images as input, and iteratively runs
sample selection. The training docker image and AL docker image are hosted by the YMIR system.
The training docker image is instantiated to train detection models and active learning models.
The AL docker image is instantiated to perform sample selection which gives each input sample a
ranking probability. The subsequent sampling procedure simply choose the top K samples. Different
AL algorithms can stick to their optimal settings by packing their code and hyper-parameters in
the docker image. ALBench has no dependency on these settings. Meanwhile, all AL methods
share identical training setups such as initial training data, number of samples to output for each
iteration, stop criteria, etc., to ensure an objective performance comparison.

Evaluation: Training with Active Learning module outputs the updated training set and
updated object detection models to the Evaluation module. To fairly compare the quality of their
selected samples, the Evaluation module will also train default object detectors with intermediate
augmented training sets in each iteration. Some active learning algorithms are coupled with
specifically designed detectors and training algorithms. Evaluation module also trains them with
their specific training algorithms provided by users. The performance evaluation is conducted after
each active learning iteration and is reported on a leaderboard.

3 Benchmark Showcase

3.1 Default Setups

With the automated training pipeline, training and testing setups can be flexibly defined in ALBench,
e.g., to include new datasets and train new detectors. This paper simply tests ALBench with default
setups to show its validity.

4



Dataset Method baseline iter1 iter2 iter3 iter4

VOC07

SSD+ALDD 52.50 (+2.29) 54.79 (+5.94) 60.73 (+4.07) 64.80 (+2.13) 66.93
SSD+CALD 52.50 (+7.47) 59.97 (+4.19) 64.16 (+2.78) 66.94 (+1.56) 68.50

SSD+RANDOM 52.50 (+4.28) 56.78 (+5.33) 62.11 (+2.67) 64.78 (+1.70) 66.48
SSD+ENTROPY 52.50 (+3.85) 56.35 (+5.22) 61.57 (+3.91) 65.48 (+1.09) 66.57

VOC12

SSD+ALDD 48.29 (+3.96) 52.25 (+5.20) 57.45 (+2.84) 60.29 (+2.19) 62.48
SSD+CALD 48.29 (+7.64) 55.93 (+2.28) 58.21 (+3.36) 61.57 (+0.94) 62.51

SSD+RANDOM 48.29 (+5.19) 53.48 (+4.53) 58.01 (+2.35) 60.36 (+1.73) 62.09
SSD+ENTROPY 48.29 (+5.68) 53.97 (+3.50) 57.47 (+3.18) 60.65 (+1.80) 62.24

Table 2: Performance of AL methods evaluated through our system

Datasets: ALBench uses two widely used object detection datasets Pascal VOC 2007 and VOC
2012 (Everingham et al., 2010) as the default training set. For VOC2007, we use its trainval set for
training and sample mining, and test on its testset. On VOC2012, we use its train set for training
and sample mining, and test on the validation set. We randomly select 1000 images as the initial
training set, and sample 1000 images in each iteration. The training stops after 4 iterations.

Algorithms: ALBench adopts the SSD300 (Liu et al., 2016) implemented with Vgg16 (Simonyan
and Zisserman, 2015) as the default object detection model. Codes for training are acquired from the
mxnet model zoo. Each active learning iteration trains for 100 epochs and picks the best model with
highest mAP on the testset for sample selection. Default active learning algorithms include two
commonly used baselines, i.e., Entropy (Roy et al., 2018) and Random Selection (Choi et al., 2021),
and two recent approaches ALDD Aghdam et al. (2019) and CALD Yu et al. (2021), respectively.

3.2 Results and Discussions

Table 2 presents the performance comparison among default active learning algorithms in ALBench.
The recent CALD outperforms ALDD and baselines on VOC07 and VOC12. At iter1, CLAD
substantial outperforms others. As more training samples are selected, those AL algorithms start to
show similar performance. This is because the training sets of VOC07 and VOC12 only contain
about 5K and 5.7K images, respectively, which minish the importance and contribution of AL
algorithms as more samples are selected. Another interesting observation is that ALDD does not
perform as good as simple baseline AL algorithms at iter1 and iter2. This could be because VOC
training set generally contains high quality samples, making random selection achieves reasonable
good performance as claimed in many studies Yu et al. (2021).

4 Limitation and Broader Impact

ALBench currently focuses on object detection task. Further work will be conducted to extend
ALBench to more vision and machine learning tasks. Besides default setups, more active learning
algorithms, larger and realistic training and testing sets will be included in ALBench to make more
comprehensive comparisons. As the first open source benchmark platform for active learning,
ALBench is expected to bring broad impact to the field of active learning.

5 Conclusions

This paper proposes an active learning benchmark framework named as ALBench to simplify
the implementation and comparison of active learning algorithms in object detection. ALBench is
powered by an automatic deep model training system, which applies unified training and testing
setups for different active learning algorithms. ALBench framework is easy-to-use, compatible with
different active learning algorithms, and ensures their objective comparison. ALBench also allows
to flexibly add more training and testing setups, and detectors. As an original contribution on the
benchmark of active learning, ALBench is expected to benefit the active learning community.

5



References

Aghdam, H. H., Gonzales-Garcia, A., Lopez, A. M., and Weijer, J. v. d. (2019). Active learning for
deep detection neural networks. In ICCV.

Brust, C. A., Kading, C., and Denzler, J. (2018). Active learning for deep object detection. arXiv
preprint arXiv:1809.09875.

Caramalau, R., Bhattarai, B., and Kim, T. K. (2021). Sequential graph convolutional network for
active learning. In CVPR.

Choi, J., Elezi, I., Lee, H. J., Farabet, C., and Alvarez, J. M. (2021). Active learning for deep object
detection via probabilistic modeling. In CVPR.

Everingham, M., L., V. G., Williams, C. K. I., Winn, J., and Zisserman, A. (2010). The pascal visual
object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338.

Feng, D., Wei, X., Rosenbaum, L., Maki, A., and Dietmayer, K. (2019). Deep active learning for
efficient training of a lidar 3d object detector. In IEEE Intelligent Vehicles Symposium.

Grauman, K. and Belongie, S. (2014). Editorial: Special issue on active and interactive methods in
computer vision. IJCV.

Haussmann, E., Fenzi, M., Chitta, K., Ivanecky, J., Xu, H., Roy, D., Mittel, A., Koumchatzky, N.,
Farabet, C., and M. Alvarez, J. (2020). Scalable active learning for object detection. arXiv preprint
arXiv:2004.04699.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In CVPR.

Huang, P. X., Hu, W., Brendel, W., Manmohan, C., Li, L.-J., and Wang, X. (2021). Ymir: A rapid
data-centric development platform for vision applications. In Proceedings of the Data-Centric AI
Workshop at NeurIPS.

Kading, C., Rodner, E., Freytag, A., and Denzler, J. (2016). Fine-tuning deep neural networks in
continuous learning scenarios. In ACCV-WS.

Kao, C. C., Lee, T. Y., Sen, P., and Liu, M. Y. (2018). Localization-aware active learning for object
detection. In ACCV.

Kovashka, A., Russakovsky, O., Fei-Fei, L., and Grauman, K. (2016). Crowdsourcing in computer
vision. Foundations and Trends in Computer Graphics and Vision.

Li, L., Wang, G., and Li, F. (2007). Optimol: automatic online picture collection via incremental
model learning. CVPR.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L.
(2014). Microsoft coco: Common objects in context. In ECCV.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single
shot multibox detector. In ECCV.

Roy, S., Unmesh, A., and Namboodiri, V. P. (2018). Deep active learning for object detection. In
BMVC.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image
recognition. In ICLR.

6



Yoo, D. and Kweon, I. S. (2019). Learning loss for active learning. In CVPR.

Yu, W., Zhu, S., Yang, T., Chen, C., and Liu, M. (2021). Consistency-based active learning for object
detection. arXiv preprint arXiv:2103.10374.

Yuan, T., Wan, F., Fu, M., Liu, J., Xu, S., Ji, X., and Ye, Q. (2021). Multiple instance active learning for
object detection. In CVPR.

7


	Introduction and Background
	Benchmark Framework Design
	Benchmark Showcase
	Default Setups
	Results and Discussions

	Limitation and Broader Impact
	Conclusions

