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Abstract Zero-cost proxies neural architecture search (NAS) can e�ciently evaluate the performance

of neural architectures and signi�cantly reduce the search cost, but existing zero-cost proxies

NAS are mainly focus on image classi�cation. This paper investigates whether zero-cost

proxies can accurately rank neural architectures used for remote sensing image segmentation.

Firstly, we design a new search space for remote sensing image segmentation, denoted as

SEG101, which considers enhancing the feature maps’ contextual information and improving

the fusion of feature maps. Secondly, a predictor-based NAS algorithm is adopted to explore

SEG101 and collect neural architectures from it. Finally, zero-cost proxies are analysised by

using the collected neural architectures. The preliminary experimental results illustrate that

SEG101 is a promising search space and also show that zero-cost proxies can be used by

predictor-based NAS for remote sensing image segmentation.
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1 Introduction

Neural Architecture Search (NAS) can automatically design neural architectures, and due to its

convenience and superior performance, NAS has been applied to many tasks, including image

classi�cation (White et al., 2021; Liu et al., 2019b), object detection (Wang et al., 2020b; Xiong et al.,

2021), semantic segmentation (Liu et al., 2019a; Zhang et al., 2021; Ding et al., 2021), and natural

language processing (Klyuchnikov et al., 2020; Li et al., 2021). Search space, search strategy, and

performance estimation strategy are the main components of NAS (Elsken et al., 2018). The search

space de�nes all the potential neural architectures that can be selected, and search strategies are

used to �nd the neural architecture with the best performance for target tasks from the search

space. The search strategy uses the performance of neural architectures to explore the search

space. Since the evaluation of neural architecture is time-consuming, the researchers propose

performance estimation strategies to speed up the procedure of evaluating neural architectures.

Zero-cost proxies (Abdelfattah et al., 2021; Mellor et al., 2021; Chen et al., 2021) are newly proposed

neural architecture performance estimation strategies that can estimate the performance of neural

architectures without training. Since existing zero-cost proxies estimation strategies are widely

used to estimate the performance of image classi�cation neural architectures, this paper tries to

extend the scope of usage of zero-cost proxies and investigate whether zero-cost proxies can be

used to accurately rank semantic segmentation neural architectures.

Semantic segmentation, which assigns a category to each pixel in an image, has been widely

used for autonomous driving (Cordts et al., 2016; Chen et al., 2018b) and medical imaging analysis

(Ronneberger et al., 2015a; Tang et al., 2021). Due to the convenience and e�ciency of NAS,

researchers have applied NAS to semantic segmentation and searched architectures that can

achieve comparable performance to human-designed networks (Liu et al., 2019a; Zhang et al., 2021;
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Ding et al., 2021). Recently proposed NAS algorithms for semantic segmentation mainly use the

gradient-based search strategy, and the searched architecture is applied to do the segmentation of

natural images. Since the distribution of categories in natural images is di�erent from that of remote

sensing images, the search space designed for remote sensing image segmentation should take into

account the properties of remote sensing images. Existing studies about NAS for remote sensing

images are mainly applied to scene classi�cation (Wang et al., 2021; Peng et al., 2021; Broni-Bediako

et al., 2022; Ma et al., 2021). In contrast to previous studies, this paper designs a new search space

for remote sensing image segmentation and utilizes the predictor-based search strategy (Wei et al.,

2022) to search the optimal architecture from the newly designed search space.

In summary, the main contribution of this paper can be summarized as follows.

• This paper designs a new search space for remote sensing image segmentation, denoted as

SEG101, and it veri�es that the predictor-based NAS algorithm NPENAS-NP (Wei et al., 2022) is

a promising search strategy for semantic segmentation.

• In this paper, we compare di�erent zero-cost proxies used to rank semantic segmentation archi-

tectures in SEG101 and demonstrate that zero-cost proxies exhibit di�erent properties in terms

of semantic segmentation compared to image classi�cation.

2 Related Works
Recent studies have applied NAS for semantic segmetnation and remote sensing scene classi�cation.

Auto-DeepLab (Liu et al., 2019a) and DCNAS (Zhang et al., 2021) use a search space consisting of

𝐿 di�erent searchable layers, each containing four feature maps with di�erent resolutions. Both

Auto-DeepLab and DCNAS employ gradient-based search strategies to explore the search space.

HR-NAS (Ding et al., 2021) designs a search space that contains architectures like Transformer

(Vaswani et al., 2017) and also adopts gradient-based search strategy to �nd the optimal lightweight

architecture. SceneNet (Ma et al., 2021) adopts a multi-objective neural evolution strategy for

remote scene classi�cation. RSNet (Wang et al., 2021) and Peng et al. (Peng et al., 2021) adopt search
spaces like Auto-DeepLab and DARTS (Liu et al., 2019b), respectively, and utilize gradient-based

strategies to solve the remote scene classi�cation problem. Unlike previous work, we use RegNet

(Radosavovic et al., 2020) as backbone and design a new search space that focuses on how to

e�ciently enhance and fusion the feature maps of the backbone network. The architecture in this

search space is used for remote sensing image segmentation, and we adopt the predictor-based

search strategy to explore the search space.

Abdelfattah et al. (Abdelfattah et al., 2021) studied the performance of zero-cost proxies in

ranking neural architectures in NASBench-101 (Ying et al., 2019), NASBench-201 (Dong and Yang,

2020), and NASBench-ASR (Mehrotra et al., 2021), and experimentally demonstrated the superior

performance of zero-cost proxies. TENAS (Chen et al., 2021) proposes to use the trainability

and expressivity of neural networks as an estimation of the image classi�cation architectures’

performance. In contrast to the aforementioned studies, this paper applies zero-cost proxies to

semantic segmentation and attempts to �nd out whether zero-cost proxies can accurately rank

remote sensing image segmentation architectures.

3 Methodology
To investigate the characteristic of zero-cost proxies for remote sensing image segmentation, a new

search space is designed and introduced in Section 3.1. Zero-cost proxies for remote sensing image

segmentation are outlined in Section 3.2.

3.1 Search Space for Remote Sensing Image Segmentation
This section discusses the proposed search space SEG101, which is designed from the perspective of

how to enhance the feature maps’ contextual information and how to conduct e�ective multi-scale
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feature fusion. The SEG101 contains two modules - the feature maps enhancement module and

multi-head feature fusion module. An overview of SEG101 is shown in Fig. 1.

Figure 1: Overview of SEG101.

3.1.1 Feature Maps Enhancement Module. In this paper, we select RegNet (400MFX) as the backbone,

which contains four di�erent stages, and the feature maps generated by these four stages (S1, S2, S3,

S4) are shown in Fig. 1(a). We divide the four feature maps into two di�erent categories according

to their spatial size, and the feature maps S1 and S2 belong to the �rst category (denoted as category

A), while S3 and S4 belong to the second category (denoted as category B).

As shown in Fig. 1(b), taking feature maps S1 as an example, the feature maps enhancement

module divieds S1 into four di�erent groups evenly by channel, and then select four di�erent

operations to enhance the features of these four groups, respectively. The candidate operations for

category A are 3×3 conv , 3×3 conv with dilation 3, and adaptive pooling layer. Since the feature

maps in category B have a smaller spatial size, the candidate operations for category B are 3×3
conv with dilation 3, adaptive pooling layer, self-attention block, and SE block (Hu et al., 2020). The

above operations are used to enhance the spatial contextual information of the feature maps. After

the spatial enhancement, a feature maps enhancement SE block is used to improve the spatially

enhanced feature maps’ global information. The feature maps enhancement SE block is discussed

in Supplementary Materials (Section A).

3.1.2 Multi-head Feature Fusion Module. The enhanced feature maps are illustrated in Fig. 1(c). In

this paper, a multi-head feature fusion module is proposed to maintain the diversity of multi-scale

feature fusion, as shown in Figure 1(d). This module employs two heads and both heads have

the same structure. Each head contains three layers, and the �rst layer contains three nodes,

and each node of the �rst layer can fusion any two enhanced feature maps. The nodes of the

second layer of each head can fusion the outputs of any two nodes of the �rst layer in the same

head. The outputs of the two heads are fused and resized to the size of input image, and the

generated feature maps are regarded as the prediction of the segmentation network. There are
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architectures in SEG101.

3.2 Zero-cost Proxied for Remote Sensing Image Segmentation

We select the six zero-cost proxies grad_norm, snip (Lee et al., 2019), grasp (Wang et al., 2020a),

syn�ow (Tanaka et al., 2020), �sher, and jacob_cov (Mellor et al., 2021) discussed in Abdelfattah et
al. (Abdelfattah et al., 2021) to analyze. For space reasons, we omit the description of these six
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proxies, and detailed information about these six zero-cost proxies can be found in Abdelfattah et
al. (Abdelfattah et al., 2021).

4 Experiments and Analysis

All the experiments in this paper are �nished by using PyTorch (Paszke et al., 2019). We use the

implementation of zero-cost proxies from Abdelfattah et al. (Abdelfattah et al., 2021) (Apache-

2.0 LICENSE), and employ the predictor-based NAS algorithm NPENAS (Wei et al., 2022) (MIT

LICENSE) to explore the search space SEG101.

4.1 Datasets

The experiments are performed by using the Massachusetts road dataset (Mnih, 2013) and the

WHU building dataset (Ji et al., 2018). The Massachusetts road dataset is a benchmark for road

segmentation that contains 1171 images, and the images of this dataset are seamlessly cropped

to 512 × 512 small images, and 8076, 224 and 784 images are selected from the cropped images

for training, validation and testing, respectively. The WHU building dataset is a benchmark for

building extraction. Similar to the road dataset, each image is seamlessly cropped to a 512 × 512

image, and the total number of cropped images is 8188, of which the training dataset, the validation

dataset, and the testing dataset are 4736, 1036 and 2416, respectively.

4.2 Neural Architecture Search Analysis

In this section, the NPENAS-NP (Wei et al., 2022) algorithm is employed to �nd the optimal

architecture from SEG101 for Massachusetts road dataset. The search budget of NPENAS-NP is 200,

and the other training details of NPENAS-NP are directly adopted from the original implementation.

Each searched neural architecture is trained on the training dataset for 20 epochs. Two NVIDIA

2080Ti GPUs are used to perform the search experiment, which costs 23.26 GPU days to complete.

The analysis of searched architectures by NPENAS-NP is illustrated in Fig. 2, and it veri�es

that the predictor-based search strategy NPENAS-NP is suitable for searching architectures applied

to remote sensing image segmentation. Fig. 2(a) shows that as the search proceeds, NPENAS-NP is

signi�cantly more likely to �nd architecture with high performance. Fig. 2(b) con�rms that most of

the architectures searched by NPENAS-NP have high performance. The above experiment results

also indicate that SEG101 is a promising search space for remote sensing image segmentation.

(a) Boxplot of the top ten architectures in each it-

eration.

(b) The mIoU histogram of the 200 searched archi-

tectures.

Figure 2: The analysis of searched architectures by NPENAS-NP.

The top-5 searched architectures are selected and fully trained for 100 epochs. The architecture

with the highest validation performance is selected from the top-5 architectures and compared

with other segmentation algorithms. As illustrated in Table 1, the best architecture searched by
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NPENAS-NP performs better than many recently designed segmentation algorithms for remote

sensing image and achieves comparable performance with DeepLab V3 plus (Chen et al., 2018b).

Table 1: Performance comparison of di�erent segmentation algorithms on Massachusetts test dataset.

Algorithms mIoU(%) IoU Target(%) FWIoU(%) PA(%) MPA(%)

U-Net (Ronneberger et al., 2015b) 62.34 – 93.05 96.16 66.56

FCN (Shelhamer et al., 2017) 75.71 – 95.50 97.54 81.49

SiU-Net (Ji et al., 2019) 75.33 – 94.51 96.64 90.74
HCN (Li et al., 2019) 77.36 – 95.78 97.69 83.55

ConDinet++ (Yang et al., 2021) 78.88 – – – –

PSPNet (Zhao et al., 2017) 79.43 61.11 96.03 97.83 85.8

DeepLab V3 + (Chen et al., 2018b) 79.71 61.63 96.09 97.87 85.9

Ours 79.55 61.27 96.1 97.89 85.08

The WHU building dataset is used to test the generalization ability of the searched architecture,

and the results are illustrated in Supplementary Materials.

4.3 Zero-cost Proxies Analysis

The search strategy NPENAS-NP is adopted to collect 498 neural architectures from SEG101 and the

rank performance of the six zero-cost proxies is evaluated on these architectures. The comparison

results are illustrated in Table 2. The high negative correlation of grad_norm, snip, and �sher can
be utilized by search strategies to explore the search space.

Table 2: Spearman correlation coe�cient of zero-cost proxies on SEG101.

grad_norm snip grasp �sher syn�ow jacob_cov

SEG101 -0.45 -0.46 0.07 -0.48 0.05 0.03

5 Limitations and Broader Impact Statement

Since this paper presents a preliminary study of the zero-cost proxies for remote sensing image

segmentation, it contains many limitations, which are listed below.

(1) Since the architectures used to evaluate the rank performance of zero-cost proxies are

collected by only one search strategy, the collected architectures lack diversity and may not be

su�cient to re�ect the properties of the search space SEG101, and the results shown in Table 2 may

only be applicable for the predictor-based strategy strategies. This limitation can be eliminated by

utilizing the method proposed in Surrogate NAS Benchmarks (Zela et al., 2022).

(2) Since the searched architecture could not achieve the SOTA performance, this re�ects that

there exists design shortages in SEG101. Design de�ciencies may hinder the search strategies to

�nd architectures that can achieve SOTA performance.

Due to the promising performance of the proposed SEG101, it can be used by other search

strategies to �nd segmentation architectures for other datasets. The results in Section 4.3 illustrate

that grad_norm, snip, and �sher can be combined with the predictor-based search strategy to search

segmentation architectures, which can signi�cantly reduce search costs.
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7 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s

contributions and scope? [Yes] [See Section 3 and Section 4.]

(b) Did you describe the limitations of your work? [Yes] [See Section 7.]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See Section 7.]

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes] [See Section 7.]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] [We do not include

theoretical results.].

(b) Did you include complete proofs of all theoretical results? [N/A] [We do not include

theoretical results.].

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txtwith explicit version), an instruc-
tive README with installation, and execution commands (either in the supplemental material

or as a url)? [No] [We will make these materials publicly available after all experiments

are completed.]

(b) Did you include the raw results of running the given instructions on the given code and

data? [No] [We will include these materials after all experiments are completed.

(c) Did you include scripts and commands that can be used to generate the �gures and tables

in your paper based on the raw results of the code, data, and instructions given? [No] [The

scripts and commands will be include in the published code.]

(d) Did you ensure su�cient code quality such that your code can be safely executed and the

code is properly documented? [No] [This will be present in the code we release.]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, �xed

hyperparameter settings, and how they were chosen)? [Yes] [See Section 4.]

(f) Did you ensure that you compared di�erent methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] [See Section 4.]

(g) Did you run ablation studies to assess the impact of di�erent components of your approach?

[Yes] [See Section 4.]

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] [See

Section 4.]

(i) Did you compare performance over time? [Yes] [See Section 4.]

(j) Did you perform multiple runs of your experiments and report random seeds? [No] [Due

to the limitation of computational resources, we did not run experiments multiple times.]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A] [We did not running experiments multiple times.]
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(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] [Tabular or

surrogate benchmarks for semantic segmentation do not exist.]

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] [See Section 4.]

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [No] [Hyperparameters are used directly from

previous work.]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] [See Section 4.]

(b) Did you mention the license of the assets? [Yes] [See Section 4.]

(c) Did you include any new assets either in the supplemental material or as a url? [N/A] [We

do not contain new assets in the supplemental materials.]

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] [Our experiments were conducted on publicly available datasets.]

(e) Did you discuss whether the data you are using/curating contains personally identi�able in-

formation or o�ensive content? [N/A] [The dataset does not contains personally identi�able

information or o�ensive content.]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] [We do not use crowdsourcing or conducted research with human subjects.].

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] [We do not use crowdsourcing or conducted research

with human subjects.].

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] [We do not use crowdsourcing or conducted research

with human subjects.].
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A Feature Maps Enhancement SE Block

The feature maps enhancement SE block is shown in Fig. 3. Di�erent from the standard SE block,

the feature maps enhancement SE block utilizes the channel information of the original feature

maps to improve the channel-wise information of the enhanced feature maps.

Figure 3: Feature maps enhancement SE block.

B Performance Comparison on WHU Building Dataset

The performance of searched architecture compares with other algorithms is shown in Table 3.

Although the architecture is searched on the Massachusetts dataset, it achieves a performance

comparable to DeepLab V3 plus, which demonstrates the good generalization ability of the searched

architecture.

Table 3: Performance comparison of di�erent segmentation algorithms on WHU test dataset.

Algorithms mIoU(%) IoU Target(%) FWIoU(%) PA(%) MPA(%)

U-Net (Ronneberger et al., 2015b) – 86.8 – – –

SiU-Net (Ji et al., 2019) – 88.4 – – –

ESFNet (Lin et al., 2019) – 85.34 – – –

CU-Net (Wu et al., 2018) – 87.1 – – –

PSPNet (Zhao et al., 2017) 93.84 89.1 97.52 98.72 96.59

DeepLab V3 + (Chen et al., 2018a) 94.32 89.96 97.72 98.83 96.94
Ours 93.5 88.51 97.38 98.65 96.47

C Visualization of Segmentation Results

The Visualization of segmentation results by di�erent algorithms on the Massachusetts road dataset

and the WHU building dataset is illustrated in Fig. 4 and Fig. 5, respectively.
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Figure 4: Visualization of segmentation results on the Massachusetts road dataset.
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Figure 5: Visualization of segmentation results on the WHU building dataset.

13


	Introduction
	Related Works
	Methodology
	Search Space for Remote Sensing Image Segmentation
	Feature Maps Enhancement Module
	Multi-head Feature Fusion Module

	Zero-cost Proxied for Remote Sensing Image Segmentation

	Experiments and Analysis
	Datasets
	Neural Architecture Search Analysis
	Zero-cost Proxies Analysis

	Limitations and Broader Impact Statement
	Acknowledgements
	Reproducibility Checklist
	Feature Maps Enhancement SE Block
	Performance Comparison on WHU Building Dataset
	Visualization of Segmentation Results

