AutoRL Tutorial @ AutoML

Aleksandra Faust Yingjie Miao Richard Song

Senior Staff Research Scientist ~ Senior Software Engineer Research Scientist
faust@google.com yingjiemiao@google.com xingyousong@google.com
https://www.afaust.info/ https://xingyousong.qgithub.io/

Google Brain, July 2022

Google Research

mailto:faust@google.com
https://www.afaust.info/
mailto:yingjiemiao@google.com
mailto:xingyousong@google.com
https://xingyousong.github.io/

Content

Why AutoRL?

e Why does RL need automation?
e AutoRL problem formulation

AutoRL training methods and tools
What parts of RL we can automate?
What are open problems?

TI:Dr;

Google Research

Learn through trial and error by interacting with the environment.

4

Google Research

Bl crone sccount Exparo ®

RL P . Wh . RL? Southwests 3 TR AR REHNG | SHOGALIGHENS, RASISRANS® Q)
rormer - atIs ! ———

o N Change fight Cancel fight

Our schedule is
now open through
April 11, 2021.

BOOK ¥ riont [ig vow () car ¥ Vacstons (D) cHEcKN (D) FLGHTSTATUS (@) CHANGEICANCEL

Baggage and optional fees @ Dolars O Points
RETURN DATE PASSENGERS

8/21 1

Tus, Aug 18,2020 Fr A 21,2020 Age2r

PROMO CODE (Optoa)

LIMITED-TIME OFFER - /

Wanna convert .
qualified travel funds Ef;nso?nesd’a?ggwap;ms

into Rapid Rewards®

= 2000 annivarsar noints aach vaar

Image credit: Waymo

A

s v

R _
p = i = =
e £ ;
Unfolded Folded

Image credit: UVM Image credit: Loon

Google Research

https://comis.med.uvm.edu/VIC/coursefiles/MD540/MD540-Protein_Organization_10400_574581210/Protein-org/Protein_Organization8.html

What is Reinforcement Learning?

Learned solution to a POMDP /RL Training Algorithm A
. . 4 N

(S, A P,R,0,8,p,,T,) Training environment

v . Actions P

XHOIHO,

Learns apolicy 1, : S — A AN D 2

YRR, 'y \§
max J(6;¢) where J(8;¢) = Ernr, lzy rt] S)

= Observations, Rewards

R:SxAxS—R

Learns a policy that maximizes expected cumulative return.

Google Research

Components of RL

Value functions / estimators:

- State value, V: the potential payoff for the state
- State action value, Q: potential payoff for the action

Exploration vs. Exploitation Trade off @
Model
LF I
Choice of what to learn
. Model — model-based RL >
« Value functions — value iteration RL

« Policy — policy search, or policy iteration ‘
« Value and policy - actor critic methods.

Google Research

RL Algorithms

RL Algorithms

|
¢ , 3
Model-Free RL Model-Based RL
] 3 ¢ 3
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient <) DQN » World Models L* AlphaZero
— > DDPG €] —_— —_— —
A2C / A3C '« " > cs1 > I2A

2] TD3 S = =

PPO < > QR-DQN —Q‘ MBMF
e — —> SAC <« —

TRPO < > HER ‘ —>; MBVE
Off-policy, on-policy, offline RL Discrete or continuous actions

8

Image credit: Open Al Google Research

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

How is RL different from SL? And why is it difficult to train?

Closed Loop
Training and
Evaluation

PoMDP Application

Google Research

Closed loop training and distributional shift in data

4 N
RL Training Algorithm P N
Training environment
L h— Actions
> u 'Q -
o@; - q -
- J

Observations, rewards

Every training iteration gathers the data from changed environment.

Google Research

Closed loop training and distributional shift in data

/
RL Training

Algorithm

D

Training Agent —
Replay Buffer
\ %

4 1\
Training environment

A
MO
{ - X v
» *
@ Vo A
O X

Actions

Actors

Observations, rewards

More complicated RL algorithm.

Google Research

Watch the video at for an example of distributional shift at the
evaluation time:

https://www.youtube.com/watch?v=xN-OWX5gKvQ&t=1s

Google Research

https://arxiv.org/abs/1902.09458
https://www.youtube.com/watch?v=xN-OWX5gKvQ
https://www.youtube.com/watch?v=xN-OWX5gKvQ&t=1s

Closed loop evaluation and precision / latency trade off.

Model capacity

Certainty / safety

—
—
— e — —

Inference time

Environment distribution shift grows with the policy latency.

Bigger not always better. Find the sweet spot.

Google Research

Function approximations and POMDP (S, A, P, R,0,9,p,,T,7)

4 N
RL Training 7T
Algorithm

4 1\
Training environment

Actions

Actors

D

Training Agent —
Replay Buffer
\ %

Observations, rewards

PoMDP doesn’t say anything about function approximations.

Google Research

Function approximations and POMDP (S, A, P, R,0,9,p,,T,7)

/

RL Training
Algorithm

4 1\
Training environment

Actions

Training Agent —
Replay Buffer
\ %

Observations, rewards

PoMDP doesn’t say anything about function approximations.

Experimentation with NN architectures.

Google Research

Function approximations and POMDP (S, A, P, R,0,9,p,,T,7)

/

RL Training
Algorithm

p
Training environment

Actions Sim2Real

Real / eval.
environment

Training Agent —
S Replay Buffer

J
Observations, rewards ,

Simulator design and Markovian property violation.

More complicated stack.

Google Research

Application Implications: Safety and Generalization

/

RL Training
Algorithm

p
Training environment

Actions Sim2Real

Real / eval.
environment

Training Agent —
S Replay Buffer

J
Observations, rewards ,

Often can cause damage, and needs to work in unstructured environments.

Training environment design and generalization methods.

Google Research

How is RL different from SL? And why is it difficult to train?

Algorithmic Design

Closed Loop
Training and Training stability
Evaluation Generalization and
Distributional L—uncertainty
Model Shift
latency Safety
Function

Approximation

PoMDP

Design Application

Simulator
Design

Google Research

Reality of Training and Evaluating RL Agents

Performance

-
RL Training

=>

Algorithm
/|

Image credit: DALL-E

D

Actors /

Training Agent —
Replay Buffer
\ %

Find hyperparameters for:

RL-focused components (Algorithm, NAS)

Task definition (reward)

Agent (observations, simulator, actions)

Environment (curriculum)

Actions

4 N\
Training environment

A

oo
T\ -
\ /

N
Y/l‘
/

Observations, Rewards /

Sim2Real

Real / eval.
environment

Google Research

Reality of Training and Evaluating RL Agents

Performance

/
RL Training

=>

/ Algorithm

Auto RL

D

Training Agent —
Replay Buffer
\ %

4 1\

Actors

A ¥
v .
.
¥ .
- ”

Actions

Find hyperparameters for:

Observations, Rewards f

RL-focused components (Algorithm, NAS)

Task definition (reward)

Agent (observations, simulator, actions)

Environment (curriculum)

Sim2Real

Real / eval.
environment

Google Research

Reality of Training and Evaluating RL Agents

Performance: objectives, rewards, gradients J(0;¢) = Err, [Z 'ytrt“

Lbiu

4 N
RL Training T X,

Algorithm Kool
/ A |for ey
=> Xig Actors/

~

Actions Sim2Real

Real / eval.
environment

N
Auto RL Training Agent /
epla urrer
N Replay Bufer y,
Observations, Rewards
Find hyperparameters for:

RL-focused components (Algorithm, NAS) .
Task definition (reward) max f(¢,0") s.t. 67 € arg;naxJ(O; ¢)

Agent (observations, simulator, actions)
Environment (curriculum)

Google Research

AutoRL Problem Formulation

Performance
P
Environment
v Actions
—_— > @ _
T\
g
Auto RL Observations, Rewards
max 0*
¢ 1(6,6°) 0" € argma-xJ(é’ ¢) J6;¢) =
Outer loop Inner loop

Bi-level optimization problem.

t>0

Google Research

Hyperparameter Taxonomy by Type

Learning Hyperparameters
Low-parameter regime

High-parameter regime

g A N r A \
Z
. A) |
28, P(x,y,z) ’ Ay
| 7, ¥ 0
"ne L NN:S — List[R] Qe
! A‘ o ‘ué} " v
{1
Categorical x Vector i Parametrized
° Symbolic functions
\ .]
Combination
Non-linear co-dependencies?
Image credit: Colton Bishop Image credit: [Co-Reyes et al., 2021] Go gle Research

Hyperparameter Taxonomy by Training-step Dependence

Is there an optimal hyperparameter for the entire inner training loop?

“’/\'\"/ oo 809 i ated

Step 1 Step 1000 Step 10000

Inner loop training

Hyperparameters Neural Network Architecture?

Discount factor?

Replay buffer size?

Replay buffer sampling policy?
Non-stationary Loss function?

Seed
Discount factor

Exploration rate

Learning rate
[Jaderberg et al., 2017;
Zhang et al., 2021]

Image credit: [Parker-Holder et al., JAIR 2022] Go g| e Research

AutoRL Cost . .
High-parameter regime

A
[4 B Y
class stable_baselines.sac.SAC(policy, env, gamma=0.99, learning_rate=0.0003, buffer_size=50000,
learning_starts=100, train_freq=1, batch_size=64, tau=0.005, ent_coef='auto’, target_update_interval=1,
gradient_steps=1, target_entropy="auto’, action_noise=None, random_exploration=0.0, verbose=0, N »
tensorboard_log=None, _init_setup_model=True, policy_kwargs=None, full_tensorboard_log=False, seed=None, 5 V!
n_cpu_tf_sess=None) [source] » N -
i Ol 4
class stable_baselines.common.policies.BasePolicy(sess, ob_space, ac_space, n_env, n_steps, y A
n_batch, reuse=False, scale=False, obs_phs=None, add_action_ph=False) [source] o y
28 hyperparameters w/o NAS, algorithm, and env design
\ J
Y
Outer loop search space extreme size

RL training often requires millions of samples and days of

DON (Adam, n=3) (Fine-tune)

Impala-CNN Rainbow (Tabula Rasa)

.
training.
15 10 15 20 25 30 35 40 45 50

Env. Frames (x 1M)

M [Agarwal et al., 2022]
Inner loop slow evaluation

Google Research

https://arxiv.org/pdf/2206.01626.pdf

AutoRL Design Considerations

Performance

e N

- Environment

s Actions ' Y

L] 1 'S

. i

N\
Auto RL Observations, Rewards

Hyperparameters -- everything not in POMDP.

e Categorical, symbolic, continuous,
differentiable

e Stationary or nonstationary

e Co-dependencies.

Expensive evaluations.

e Searchinlarge spaces

e Long evaluations (hours or days)

Google Research

Training Methods

e Search
e Gradient-free methods
o Evolutionary methods
e Optimization methods
o Bayesian Optimization
o Gradient-based (MAML)
e Multi Arm bandits
e Population-based Training

Google Research

Training Methods - Search

(@) O O)
O
(@) O O
@)
CO . . . CO
(@)
@)
(@)
O (@) (@)
Cl Cl
Grid search Random search

In multidimensional search spaces, random search provides more information
about the objective function.

Image credit: [Parker-Holder et al., JAIR 2022]

Google Research

Training Methods - Evolutionary Methods

Initialize
Population

D:D -
- Calculate .
- Djj Fitness -
% o1
Check Stop Select %
[Criterion] [Survivors] Djj

= - [Recombination] [Mutation J

o 00— .

Google Research

Training Methods - Multi-Arm Bandits ehon. 2015

Unknown
Environment

Observations

St « Bandit Problem
Reward - MDP
: Action
‘ . - POMDP
Transition Probabilit

Little 4-armed octopus bandit

Observation Probability

Stateless action selection

Image credit: Bo Liu

Google Research

https://arxiv.org/abs/1508.03326

Training Methods - Bayesian Optimization

)| £ Nk A0\
Regressor (e.g. Gaussian Process): i A \ () 2 57 \
\ \
Uncertainty estimates of the k. //’ M — Y o
\ e ~ / ~
objective function. ¢ JG i) g - g
> >
Acquisition function: p ~a () %.23
i - \ Pi N
Explore / exploit trade-off on f. S X .\\ (3) S S 3\
. * am | SN
. N H i
Next sample recommendation: ‘\./' N ‘\'/' 1 "
Argmax of the acquisition > >

function.

Image credit: [Parker-Holder et al., JAIR 2022] Go g|€ Research

Training Methods - Optimization - MAML

Algorithm 1 Model-Agnostic Meta-Learning
Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters

1: randomly initialize 6

2: while not done do

3: Sample batch of tasks 7; ~ p(T)

4 for all 7; do

5: Evaluate Vg L7, (fg) with respect to K examples

6 Compute adapted parameters with gradient de-
scent: 8, = 60 — aVoLr,(fo)

7 end for

8: Update § «+ 6 — BVy Z’I'in(T) L, (fg:)

9: end while

— meta-learning

9 ---- learning/adaptation
VLs
VL,
«O*
VLI \ .-~ —Ha
1 63

Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation 6 that can
quickly adapt to new tasks.

Credit: [Finn et al., ICML 2017]

Google Research

https://arxiv.org/abs/1703.03400

Training Methods - Population-based Methods

Performance / N

=y = =3

Hyperparameters O @.. | O @

Model [] e U N D IS

PBT jointly optimizes a population of models and their
Hyperparameters. Nonstationary parameters.
[Jaderberg et al, 2017]

Image Credit: Deepmind

Google Research

https://arxiv.org/pdf/1711.09846.pdf

Training Methods - Trade-offs

Class Algorithm properties What is automated?

Random/Grid Search (4.1) t+t+ B == = hyperparameters, architecture, algorithm
Bayesian Optimization (4.2) +t+ B = v = hyperparameters, architecture, algorithm
Evolutionary Approaches (4.3) +tt B = = hyperparameters, architecture, algorithm
Meta-Gradients (4.4) t vV - ~ hyperparameters

Blackbox Online Tuning (4.5) + B - / = hyperparameters

Learning Algorithms (4.6) tHH B = = algorithm

Environment Design (4.7) tH B = A environment

T only uses a single trial, +11 requires multiple trials

V requires differentiable variables, B works with non-differentiable hyperparameters
=3 parallelizable — not parallelizable

v works for any RL algorithm, © works for only some classes of RL algorithms

= static optimization, ~ dynamic optimization

Image credit: [Parker-Holder et al., JAIR 2022] Go g| e Research

What to learn?

RL-focused components
e Tools for Hyperparameters

e Neural Architecture Search (NAS) /f N
e RL Algorithm Learning g Environment

DD Actions U , :
Task components: Reward . /\ . O

\§ J
Auto RL Observations, Rewards

Agent-based environment learning /

Performance

Environment-based learning

Google Research

Hyperparameter Tuning Packages

e Services: Host algorithms on a server.
o More flexible + scalable
o Additional engineering complexity

e Frameworks: Execute entire optimization (both

algorithm + user evaluation) - _
o Convenient, full automation y - AX S EHE s e
o Requires knowledge of entire evaluation pipeline

e Libraries: Implement blackbox optimization
algorithms

o Offer most freedom P elle rch
o Lack scalability features / limited to single machine

Thou shall learn hyperparameters.

Google Research

Open Source Vizier Service

OSS Vizier Service: Allows distributed multi-client + reliable tuning

Vizier
Supports most types of blackbox optimization ‘

qithub.com/google/vizier
OSS Vizier Service AutoML-Conf Systems 2022

\& ‘; A et

I Client 2 { Service API J - Suggestion

[/

‘} i A . Measurement
Client 3 L

Thou shall learn hyperparameters.

Image Credit: [Song et al., AutoML-Conf Systems 2022] GO gle Research

https://github.com/google/vizier

Demo w/ OSS Vizier + Dopamine RL

(More in github.com/google/vizier/tree/main/demos)

from-vizier.benchmarks import-rl-as rl_benchmarks
from vizier.service import pyvizier
from vizier.service import vizier_client

experimenter = rl_benchmarks.Atari100kExperimenter (
Evaluator + game_name='Pong', -agent_name='DrQ")
Search Space + problem_statement = experimenter.problem_statement()
Algorithm study_config = pyvizier.StudyConfig.from_problem(problem_statement)
study_config.algorithm = pyvizier.Algorithm.GAUSSIAN_PROCESS_BANDIT

Vizier

client = vizier_client.create_or_load_study(
service_endpoint="'localhost:6006",
. owner_id="my_username',
+
Client + IDs study_id="atari1@0k_pong',
study_config=study_config,
client_id="'1")

for-_-in-range(10):
suggestions = client.get_suggestions(suggestion_count=1)
Evaluation Loop completed_trials = experimenter.evaluate(suggestions)
for completed_trial in completed_trials:
client.complete_trial(completed_trial.id,

completed_trial.final_measurementﬂ

Thou shall learn hyperparameters.

Image Credit: [Machado et al, JAIR 2018]

A
EDjJ\/

Dopamine

Atari100K

Google Research

https://github.com/google/vizier/tree/main/demos

What to Learn? Neural Network Architectures

Performance
4 N\
——— Environment
WEHDSD Actions m o
|:l> KX X 8 :
O OEALN)
AR - '.‘
w w
\§ J
Auto RL Observations, Rewards

Google Research

What to learn? Neural Network Architectures

Architectures matter for:
e Inference Speed
e (eneralization
e Sample Complexity
{]

Adaptation
Train Test
pick place pick place pick place pick place =
Goal Location 1 Goal Location 2 Goal Location 3 Goal Location N - ﬂ 1
Credit: [Yu et al. CoRL 2019] Credit: [Cobbe et al. ICML 2020]

Google Research

Efficient Methods in NAS for RL

Original trial-by-trial formulation: Way too slow +
expensive.
e CIFAR-10 already takes 2000+ GPU days to do
NAS! [Zoph et al, CVPR 2018]
e In RL, noisy evaluation only makes it worse!

Credit: Depositphotos (Stock)

60

=== TRPQ (0.0)
TRPO+VIME (103.7)
== TRPO+L2 (0.0)

50

What are some efficient methods? 20

30

20

10

0 200 400 600 800 1000

Credit: [Houthooft, NeurlPS 2016]

Google Research

Low Parameter Regime

Low Parameter Regime (~10K weights): Optimize architecture + weights simultaneously
e Evolutionary Methods
o NEAT [Stanley + Miikkulainen, EC 2002]
o Regularized Evolution [Real et al., AAAI 2019]
o ES-ENAS [Song et al, 2022]

Environments Architectures

dx O
xO

do o Oqg e,

Ql(y), 3 b o)
2, force
cos(0)0 O ap, OCO& O%

sin(0) O O‘P’gb

) Oz,
1 > " bias O Og;
Cart Position Long Pole Angle ~ Short Pole Angle Bias ep
Cartpole ' Stanley + Miikkulainen, Gaier + Ha, NeurlPS
Evolutionary Computation 2019

2002

Caveat: Zero-order methods suffer under too many weight parameters.
v Y y weight p Google Research

High Parameter Regime: DARTS

High Parameter Regime (1M+ weights): Gradients for weight-training
e DARTS [Liu et al, ICLR 2019] used for RL in [Miao et al,
AutoML-Conf 2022]: Minimally invasive!

DARTS Supernet

4

Op1 Op2 Op3

[eXeXe)

ﬂi !
1
/

Credit: [Miao et al. AutoML-Conf 2022]

ne

Sl

o]

feature_network = darts_policies.DartsIMPALACNN(depths=[16, 3

qithub.com/gooaqle/brain autorl/tree/main/rl_darts

Google Research

https://github.com/google/brain_autorl/tree/main/rl_darts

Hidden State
Mutation
E——

High Parameter Regime (Open Questions)

Possible Methods for NAS in RL? Little work so far.

e Blackbox Optimization? How to deal w/ strong noise?
o Regularized Evolution [Real et al, AAAI 2019]?
o BayesOpt?

e Other weight sharing methods? How to make simple?
o ENAS [Pham et al, ICML 2018]?

e Others? How to scale to modern DL?
o HyperNEAT [Stanley et al, Artificial Life 2009]7?

Weight
X
T L] o o
Y2 ° ° °
CPPN ° ° ° a

T2 % 4 ’ /
X, Y, X, ¥, Bias
T) “

Neural network

Credit: [Real et al, AAAI 2019]

Credit: Roos, Blogpost on HyperNEAT, 2020 Credit: CMU ML Blog, 2020

Google Research

What to Learn? RL Loss Functions

Performance
p
r Environment
/9 Actions m -
'.‘ -
\ w w
Auto RL Observations, Rewards

Main idea: RL loss function, £(8; () is a parameterized object.

Google Research

What are we learning? Algorithms!

Loss Functions

Symbolic

o
Evolutionar Gradient Domain Specific Selection and
. Descent Language Search

Search space millions of parameters and ~10'°° programs [Garau-Luis et al., 2022]

Careful design + pruning + optimization.

Google Research

https://arxiv.org/pdf/2204.04292.pdf

[Houthooft et al., 2018]

Loss function adaptive to environment and agent history.

L, within batch of M samples
with a sliding buffer of N samples ‘ EPG
1500 1 — PPO

ES evolved %
®

Params update Objective dense layers -g 1000 ~
S — g £
S =]

Vi & g B 5007
evolved - =

temporal
/\ / convolutions 0 A
SGD POIle yd extra data, e.g., done,
\/ tim(igtep, memory,... —500 -
0 10000 20000 30000
steps

Faster training + generalization to
out of distribution data.

Loss function: temporal
convolutions NN.

Google Research

https://arxiv.org/pdf/1802.04821.pdf

What are we learning?

Environment Replay Buffer f=*"""""" e,
e® | e e

\:
Interact
¢

B® v‘ b.p| Critic
el i - e
Store Q;‘)(s ,a)

Meta Learning

La<at Vo 0O(s, my(s))
with ¢'= ¢ — VyL,

A neural objective function that

> implements an RL algorithm

Lz, Ty, V)

MetaGenRL: population of agents train a single meta-objective

[Kirsch et al., 2020]

Require Jacobian vector product
computation. Readily available.

Some cross domain generalization.

[Bechtle et al. 2021]
[Kirsch et al., 2020]
[Oh et al., 2020]

Generalize to new different domains.

Policy Prediction },
s Yy '

.)X

[Update rule (LPG) 7]]

!

Lifetime with environment £

" ‘iﬂ 77,‘(i

Learned Policy Gradient: what and how to predict

[Oh et al., 2020]

Google Research

https://arxiv.org/pdf/1906.05374.pdf
https://arxiv.org/pdf/1910.04098.pdf
https://arxiv.org/pdf/2007.08794.pdf
https://arxiv.org/pdf/1910.04098.pdf
https://arxiv.org/pdf/2007.08794.pdf

[Laroche and Féraud 2018]

Loss function L£(8; () defined with a domain specific language (DSL).

Select best algorithm

01:S > F &
\ - o

RL Agent Population Training

Evaluate

Mutator

NN:S 5F NN:S o F
PEE—— I —
target /prediction \ i vl (1SR R AR A
ActionPrediciionLos ‘ 7777777777777777777777777‘1 ;\:&‘m S :,p:avm:m;;L
Add To Loss ‘\Eg;"“""‘"e"‘:‘ Spawn new training agent ///[
DSL for curiosity module trained w/ regressor. Loss function as a DAG. Lots of tricks due to size of
Search space combines NN, buffers, custom loss, search space. [Co-Revyes et al. 2021]
etc. [Alet et al. 2020] Meta-Training Performance Histogram
1000
w 800
£
Interpretable loss functions. £ w0 RL algorithm
5 o performance histogram.
E
First time large databases of loss functions. 20
github.com/jcoreyes/evolvingrl 0
0.0 05 10 15) 20 25 30 35 40
RL Evaluation Performance Go gle Research

https://arxiv.org/pdf/1701.08810.pdf
https://github.com/jcoreyes/evolvingrl
https://arxiv.org/pdf/2003.05325.pdf
https://arxiv.org/pdf/2101.03958.pdf

What are we learning? Algorithms! Objective

Main idea: View RL algorithms (e.g. DQN) as points in a
hyperparameter space. To discover algorithms is to do HP
tuning in that space.

Google Research

What are we learning? Algorithms! -
Objective

Main idea: View RL algorithms (e.g. DQN) as points in a
hyperparameter space. To discover algorithms is to do HP
tuning in that space.

Result: Co-Reyes et al. (2021) discovered new value-based
RL algorithms that outperform baselines. These algorithms
are interpretable, transferable, and implementable.

Google Research

What are we learning? Algorithms! -
Objective

Main idea: View RL algorithms (e.g. DQN) as points in a
hyperparameter space. To discover algorithms is to do HP
tuning in that space.

Result: Co-Reyes et al. (2021) discovered new value-based
RL algorithms that outperform baselines. These algorithms
are interpretable, transferable, and implementable.

In this Tutorial:
e Algorithm representation and search space design
e Optimization method and tricks
e Code and colab example

Google Research

Algorithm representation and the search space

Algorithm (loss function) as a DAG

[5000 | | 05— List[R] |

Lpgn = (Qo(st,ar) — (re + v * mgXQef(StH,a)))Q

Google Research

Algorithm representation and the search space

Algorithm (loss function) as a DAG How to turn this into a HP and vice versa?

s = List[R)

NN: S — List[R]

Each DAG can be viewed as a sequence of
categorical HPs, one for each intermediate
node (and the output node).

0':S — List[R]

NN: S — List[R]

SelectList

Fixed inputs 1of N, 1ofN, 10of N,

L2 Distance

Lpon = (Qo(st,ar) — (re + v * mgXQH'(StH,a)))Q

Google Research

Algorithm representation and the search space

Algorithm (loss function) as a DAG How to turn this into a HP and vice versa?

Each DAG can be viewed as a sequence of
categorical HPs, one for each intermediate
node (and the output node).

[seer | [0:5- List[R]]

NN: S — List[R]

SelectList

Fixed inputs 1of N, 1ofN, 10of N,

For each intermediate node: which op to use (+, -, ...)?
Which previous nodes as inputs?

Output

For the output node: which intermediate node to output?

Lpon = (Qa(st,ay) — (re + 7 * mnggl(stH,a)))z
Encoding-decoding logic is necessary for mapping
between HPs and DAGs.

Google Research

Search space detail

Operation

| Input Types |

Output

Type

Add

X, X

Subtract

Max

Min

DotProduct

Div

L2Distance

MaxList

MinList

ArgMaxList

SelectList

MeanList

~
o~
w
o~
A
P -

VarianceList

Log

Exp

Abs

(C)NN:S — List[R]

—

R]

(CONN:S —» R

(CONN:S —» V

Softmax

KLDiv

Entropy

Constant

I g 5 | <] 5| 5| 3| 4| 4| 34 4 4|)| 53 5| | 2 |) 2 i <

1,05,0.2,

0.1, 0.01

Multiply Tenth

Normal(0, 1)

Uniform(0, 1)

7| BB R

Operations:
e Covers many known value-based RL algorithms.
e Typed inputs/outputs help to prune the search space.
e |n practice, need to set a max size of the DAG (~20
worked).

This completes the specification of the HP search space.
Next:

e Define an optimization objective.

e Plug in your favorite HP tuning algorithm!

Google Research

Training overview

/ | Mutator |
o il
. . Environments {E} E

Mutated
Algorithm L

\ | Algorithm Evaluation |

Eval(L, E)

. Randomized
Algorithms

Known
Algorithms

Population of RL
Algorithms {L}

Optimization objective: sum of normalized returns on meta-training environments
Optimization method: Regularized Evolution

Distributed training is paramount (~300 CPUs for 3 days, ~20K candidates)
Speedup tricks:

e Hurdle environment (cartpole) — fail fast!

e Functional equivalence hashing and caching — dedup!
Google Research

Discovered Algorithms

DQNReg: regular DQN + a regularization term "

Lponree = 0.1 % Q(s¢, az) + 62

DQNReg generalizes to unseen classic
Control, MiniGrids and Atari tasks.

Trained on non-image environments.
Not tuned to Atari games.

o TR
4 o

V"\-/
i IWM — oL
w DDON
— DN
N --- DQNClipped
;"\,,J —— DQNReg
J

Steps

Env DQN DDQN PPO DQNReg
Asteroid 1364.5 734.7 2097.5 2390.4
Bowling 50.4 68.1 40.1 80.5
Boxing 88.0 91.6 94.6 100.0
RoadRunner | 39544.0 44127.0 35466.0 65516.0

DQN DQNReg

Baselines taken from reported numbers.

Google Research

In code and colab P ' LOA

1. Search space definition PyGlove (AutoML library) Acme (RL library)
97 for i in range(search_program_length):
98 program_1lst.append(
99 pg.oneot (‘//// PyGlove allows arbitrarily complex HP
100 product_input_ops(inputs, existing_ops, i, operators, freeze_ops)))

A list of nodes, each node is a tunable object, as indicated by pg.oneof(<list>)

2. Search algorithm (Regularized Evolution)

282 return pg.evolution.Evolution(

283 reproduction=(

284 # Tournament selection and mutation.

285 pg.evolution.selectors.Random(tournament_size, seed=seed) >>

286 pg.evolution.selectors.Top(1l) >> graph_mutator),

287 population_init=(graph_generator, population_size),

288 population_update=(

289 # Pop out oldest individual and update functional equivalence cache.
290 pg.evolution.selectors.Last(population_size) >> update_cache))

Google Research

In code and colab (continued)

3. Main training loop Toy Training Curve
Evaluation result
(decoded) HP goes here 08
\ / =) 26
128 for program_spec, feedback in|pg.sample(041
129 search_space, generator, FLAGS.max_trials): \AJ
Search space Regularized Evolution ° o “0 - - 100

End-to-end colab:
https://github.com/google/brain autorl/blob/main/evolving rl/EvolvingRL Demo.ipynb

Google Research

https://github.com/google/brain_autorl/blob/main/evolving_rl/EvolvingRL_Demo.ipynb

What are we learning? Algorithms!

Loss Functions

Symbolic

<D
. Gradient Domain Specific Selection and
Evolutionary
Descent Language Search

Careful design + pruning + optimization.

Generalize across domains in discrete action spaces.
PG and Actor/Critic more challenging. [Garau-Luis et al., 2022]

GoogleResearch

https://arxiv.org/pdf/2204.04292.pdf

What to Learn? Rewards

Performance

Environment

Actions m ’
g T J
Auto RL Observations, Rewards

!

Main idea: Learn intrinsic rewards that maximize the excertic rewards.

Google Research

Reward tuning is difficult.

What to learn? Task Components. Rewards.

Sparse rewards. Difficult to design rewards.

3
4[Environment 200 po——————————
y EEE Ours [231 BN [14)
rex o 150
ﬁ‘\ @ 08- - 2
s Agen:. > 8 06 - _ 5 - o
W a 5 Gl ~ - g) & NS
s in () = BiPaRS-EM
iy © Bl bt - “w)/ =EE
7) 0.0 — _ % BiPaRS-IMGL >
’ ,Vglzxﬂ'n *. "*'.-.*--*---*~~*--n‘-\.~-b.'.'*‘. .
. 510 1015 15-20
Pt(:{lai)cy,,’ Goal Distance Range (m) 0.0 25 50 7.5
7’ P
- Training Steps(x120000)

[Zhen et al. 2018] adds intrinsic [Chiang et al. 2019] Feature-based BiPaRS [Hu et al. 2020]

reward neural network. intrinsic reward w/ ES. Feature-based reward shaping
Inner and outer: GD. function w/ meta-learning.

Reward shaping helps for more complex tasks. Exact method is less important.

Google Research

https://arxiv.org/abs/1804.06459
https://proceedings.neurips.cc/paper/2020/file/b710915795b9e9c02cf10d6d2bdb688c-Paper.pdf
https://arxiv.org/abs/1809.10124

Learn the intrinsic reward that completes task.

Each trains with

Select polic .
mutated reward. policy Policy and
A Reward that
RL Agent Population Training | [~ 1 makes learning the
Evaluate task tractable.
Mutator
Nl
Nk il Select next
- ﬁ> parametrization based
it on the performance of
g the population
(CMA-ES [Hansen etal. 95])

& ./.\. Spawn new training agent J Task objective.

Single trial: Equivalent of 12 days of training. 12 hours wall time.
1000 trials: Equivalent of 32 years of training experience. 5 days wall time.

g [Learning Navigation Behaviors End to End with AutoRL, Chiang*, Faust,* Fiser, Francis, RA-L/ICRA 2019] [Preprint, Video] GO gle Research

https://arxiv.org/abs/1809.10124
https://docs.google.com/document/d/1NQrAWwOsIonwES0tW5aPxAYXqf1CvyOb5tjmV1XusjY/edit?usp=sharing
https://youtu.be/0UwkjpUEcbI

Zero-shot transfer

Differential drive. Kinodynamic constraints.

Generalizes to real world, unseen
Works on variety of robots. environment.

Adapts to changes on the go.

‘ [Learning Navigation Behaviors End to End with AutoRL, Chiang*, Faust,* Fiser, Francis, RA-L/ICRA 2019 Preprint, Video] Go g|e Research

https://arxiv.org/abs/1809.10124
https://docs.google.com/document/d/1NQrAWwOsIonwES0tW5aPxAYXqf1CvyOb5tjmV1XusjY/edit?usp=sharing
https://youtu.be/0UwkjpUEcbI

How general is intrinsic reward learning?

SAC [Haarnoja et al, 2018]

PPO [Schulman et al, 2017]
DDPG |[Lillicrap et al, 2015]

Ve

-

Intrinsic reward helps in more complex tasks.

-

Ve

-

Learn the rewards instead of hyper-parameter
tuning, on a fixed training budget.

J

Ve

-

Codependency between RL algorithm and
intrinsic reward.

Ve

Simple objective performs almost as well --
without hand engineering.

J

©

[Evolving Rewards to Automate Reinforcement Learning, Faust, Francis, Mehta, 6th AutoML @ ICML 2019] [Preprint, Video]

Objective

10000 -

8000 -

6000 -

4000 -

2000 -

Study

— SAC Hyperparams
SAC AutoRL

0~

0

1
200

1
400

|
600
Index

|}
800

Go

gle Research

https://arxiv.org/abs/1905.07628
https://www.youtube.com/watch?v=svdaOFfQyC8&feature=youtu.be

What to Learn? Environment-based learning.

Performance
4 N\
——— Environment
\‘,‘-. A'j:}. \ Actions m .
. : 7 , - . y 3
O OEALN)
AR - , '.‘
w w
\§ J
Auto RL Observations, Rewards

Google Research

What to learn? Agent-based environment learning.

Append [0[1]2]0]

EEK-FhlE] . .
W N\GTT[LEarahani and Mozayani

2019] combine actions

|29

l:08

FiGAR learns action

. and its duration. Alteration
Action Space rsh t al. 2017] npn into macro w/ GA
arma e a 5 . Macro
1 2 (a) The genetic operators.
Augmented Observations Environment Observations
UCB Augmentation 11 |

5

"

ma ¥
.
t |

[Raileanu et al. 2021] UCB bandit selects image transformations for observations.

{fi,es ful} —fi—

random-conv

Observations

‘World Models

David Ha' Jiirgen Schmidhuber 23

Abstract World Models learn vision, memory, and
environment w/ VAE.
[Ha and Schmidhuber, 2018]

/e explore building generative neural networl

Dynamics

Figure 1. A World Model, from Scott McCloud’s Understanding
Comics. (McClond. 1993: F. 2012}

Google Research

https://proceedings.neurips.cc/paper/2021/file/2b38c2df6a49b97f706ec9148ce48d86-Paper.pdf
https://www.sciencedirect.com/science/article/abs/pii/S1568494619303540
https://www.sciencedirect.com/science/article/abs/pii/S1568494619303540
https://arxiv.org/pdf/1702.06054.pdf
https://arxiv.org/pdf/1803.10122.pdf

What to Learn? Curriculum.

Order of tasks and environments for the agent to train on.

_ bidirectional
One bin for every combination of tasks For each learning progress curricuilim
generation, do:
Task 1bin Task 2 bin Task 1 &2 bin All tasks bin Protagomst
1\ @—\7 a N\ g—\ agent n°
£ é 5 é . Select parents -
i 2|, Tl randomly P A "
H - H . o : i versary n generates)
_Dversity _JI_Diersity) _Diversty ") from any bin environn?;ntsgto maximize Antagonist
agent ™
Copy and mi Genereate \
, offspring Regret = R(t") - R(t")
(¢ (‘é N 7 ‘\\\@) Antagonist Protagonist
E E S f EL‘P. Add copy of
2 b £ \ . HE offspring to
B el—— — = " every bin
k Djiversity Y \ Djversity J Divergity) \ Divdrsity J
(N Gh N N\ ¢ N
e, : .
El ™ I & N Perform local
2 2 z\“ ! T selection
£ = & — — in every bin
_ Diversity |\ Diversity | Diversity ™) _ Diversity (a) Domain R ion (b) Minimax Adversarial ~ (c) PAIRED (ours) (d) Transfer task
0 20000 40000
Combinatorial [Kanitscheider et al, 2019] PAIRED constrained environment
Multi-Objective Evolutionary Learning progress based generation and RL agent.

Algorithm (CMOEA) multi-task curriculum [Dennis et al, 2020]
[Huizinga and Clune, 2019]

Improves generalization. Sensitive to learning methods.

Google Research

https://arxiv.org/pdf/2106.14876.pdf?curius=506
https://arxiv.org/pdf/1807.03392.pdf
https://arxiv.org/abs/2012.02096

What to Learn? Combination of components.

Components Design Space
A B U ' Q —8)
b Sensors RGB RGB-D Lidar | 3
A E Mini-UAV
Autonomy = " X System
Algorithms | DroNet TrailNet CAD2RL Custom
-0 {100 Blmons,) # » AutoPilot Micro-UAV
- o System
Onboard NCS .~ Custom
Compute X2 Ras-Pi pccelerator
~O (100 Millions)
; == S Nano-UAV
vAv Micro-UAV Nano-UAV Systen
Platform Mini-UAV icro
~O (10-100)

LEARNA: reward + neural architecture + Auto-pilot: NAS + accelerator

learning hyperparameters [Krishnan et al. 2022]
[Runge et al, 2019]

Google Research

https://openreview.net/forum?id=ByfyHh05tQ
https://arxiv.org/abs/2102.02988

Summary of What to Learn?

What we know

Do learn learning HP.

Do learn intrinsic rewards for
complex problems. Codependency
with RL algorithm.

Do use curriculum for complex
problems. Sensitive to task.

Loss function learning has promising

generalization results in discrete
action spaces. Requires careful
Qesign + pruning + optimization.

~

What we don’t know

Very little work in NAS.

Very little work in agent learning

What are important components to

learn?

Which HP are nonstationary?

How to learn many components?

What are the best learning methods

J

Qor each component?

J

Google Research

Open Problems

® Theoretical understanding

O HP co-dependencies.
o Learning method appropriateness.

e Practical benchmarks
o Non-trivial RL problem, and tractible outer loop.
o Metrics.

e Nurture vs. nature trade off

e Integrative methods
o Population-based training, multi-generational evolution + GD
o Larger groups of HP, rewards, models, full algorithms.

Google Research

TL;:Dr;

Fundamental difference between RL and SL - more knobs and interdependencies. Stability
of training and generalization due to non-stationarity and out of distribution.

Computational cost (AutoRL) = cost (AutoML) x cost (RL)

Hyperparameter taxonomy: numerical, symbolic, neural. Stationary or nonstationary.

Learn selected parts of the system: learning HP, NAS, loss, rewards, agent and
environment components.

Future: Co-dependencies. Nonstationary hyperparameters. Scaling up.

Demos:

qithub.com/googlelvizier/tree/main/demos
aithub.com/gooagle/brain_autorl/blob/main/evolving rl/EvolvingRL Demo.ipynb
aithub.com/jcoreyes/evolvingrl

Google Research

https://github.com/google/vizier/tree/main/demos
https://github.com/google/brain_autorl/blob/main/evolving_rl/EvolvingRL_Demo.ipynb
https://github.com/jcoreyes/evolvingrl

Ten+ years of full AutoRL training.
Joint curriculum and nonstationary hyperparameter training.

79

Google Research

Journal of Artificial Intelligence Research 74 (2022) 517-568 Submitted 01/2022; published 06/2022

Acknowledgements

Automated Reinforcement Learning (AutoRL):
A Survey and Open Problems

Jack Parker-Holder JACKPH@ROBOT
University of Ozford
Raghu Rajan RAJANR@CS.UNI-FREIBURG.DE

University of Freiburg

Xingyou Song XINGYOUSONG@GOOGLE.COM
Google Research, Brain Team

André Biedenkapp BIEDENKAGCS. UNI-FREIBURG.DE
University of Freiburg

Yingjie Miao YINGIIEMIAO@GOOGLE.COM
Google Research, Brain Team

Theresa Eimer EIMER@TNT.UNI-HANNOVER.DE
Leibniz University Hannover

Baohe Zhang ZHANGB@CS. UNI-FREIBURG.DE
University of Freiburg

Vu Nguyen @AMAZON.COM

Amazon Australia

J O h n D, CO - Reyes Roberto Calandra RCALANDRAGFB.COM

Meta Al

Aleksandra Faust SANDRAFAUST@GOOGLE.COM
s ey Google Research, Brain Team

Frank Hutter FHECS.UNI-FREIBURG.DE

University of Freiburg & Bosch Center for Artificial Intelligence

Marius Lindauer LINDAUER@TNT.UNI-HANNOVER.DE
Leibniz University Hannover

Abstract

The combination of Reinforcement Learning (RL) with deep learning has led to a series
of impressive feats, with many believing (deep) RL provides a path towards generally capable
agents. However, the success of RL agents is often highly sensitive to design choices in the
training process, which may require tedious and error-prone manual tuning. This makes it
challenging to use RL for new problems and also limits its full potential. In many other
areas of machine learning, AutoML has shown that it is possible to automate such design
choices, and AutoML has also yielded promising initial results when applied to RL. However,
Automated Reinforcement Learning (AutoRL) involves not only standard applications of
AR AutoML but also includes additional challenges unique to RL, that naturally produce a
B different set of methods. As such, AutoRL has been emerging as an important area of
research in RL, providing promise in a variety of applications from RNA design to playing

Richard Song Jack Parker-Holder

@2022 Al Access Foundation. All rights reserved.

Google Research

Thank You 7’

Fundamental difference between RL and SL - more knobs and interdependencies. Stability
of training and generalization due to non-stationarity and out of distribution.

Computational cost (AutoRL) = cost (AutoML) x cost (RL)

Hyperparameter taxonomy: numerical, symbolic, neural. Stationary or nonstationary.

Learn selected parts of the system: learning HP, NAS, loss, rewards, agent and
environment components.

Future: Co-dependencies. Nonstationary hyperparameters. Scaling up.

Demos:

qithub.com/googlelvizier/tree/main/demos
aithub.com/gooagle/brain_autorl/blob/main/evolving rl/EvolvingRL Demo.ipynb
aithub.com/jcoreyes/evolvingrl

Google Research

https://github.com/google/vizier/tree/main/demos
https://github.com/google/brain_autorl/blob/main/evolving_rl/EvolvingRL_Demo.ipynb
https://github.com/jcoreyes/evolvingrl

