
Aleksandra Faust
Senior Staff Research Scientist
faust@google.com
https://www.afaust.info/

Google Brain, July 2022

AutoRL Tutorial @ AutoML

Yingjie Miao
Senior Software Engineer
yingjiemiao@google.com

Richard Song
Research Scientist
xingyousong@google.com
https://xingyousong.github.io/

mailto:faust@google.com
https://www.afaust.info/
mailto:yingjiemiao@google.com
mailto:xingyousong@google.com
https://xingyousong.github.io/

Content

Why AutoRL?
● Why does RL need automation?
● AutoRL problem formulation

AutoRL training methods and tools

What parts of RL we can automate?

What are open problems?

Tl;Dr;

Proprietary + Confidential

Why AutoRL?

4
Learn through trial and error by interacting with the environment.

RL Primer - What is RL?

Image credit: UVM

Image credit: Waymo

Image credit: Loon

https://comis.med.uvm.edu/VIC/coursefiles/MD540/MD540-Protein_Organization_10400_574581210/Protein-org/Protein_Organization8.html

RL Training Algorithm
Training environment

Observations, Rewards

What is Reinforcement Learning?

Actions

Learned solution to a PoMDP

Learns a policy

Learns a policy that maximizes expected cumulative return.

Components of RL
Value functions / estimators:

• State value, V: the potential payoff for the state
• State action value, Q: potential payoff for the action

Exploration vs. Exploitation Trade off

π
Q V

Model

PR

Choice of what to learn
• Model – model-based RL
• Value functions – value iteration RL
• Policy – policy search, or policy iteration
• Value and policy - actor critic methods.

RL Algorithms

8

Image credit: Open AI

Off-policy, on-policy, offline RL Discrete or continuous actions

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

How is RL different from SL? And why is it difficult to train?

PoMDP

Closed Loop
Training and
Evaluation

Application

Closed loop training and distributional shift in data

Every training iteration gathers the data from changed environment.

Training environment

Observations, rewards

Actions

RL Training Algorithm

RL Training
Algorithm Training environment

Observations, rewards

Actors

Training Agent
Replay Buffer

Actions

More complicated RL algorithm.

Closed loop training and distributional shift in data

[Long-Range Indoor Navigation with PRM-RL, Francis, Faust, Chiang, Hsu, Kew, Fiser, Lee @ under submission] [pdf, Video,]

Watch the video at for an example of distributional shift at the
evaluation time:

https://www.youtube.com/watch?v=xN-OWX5gKvQ&t=1s

https://arxiv.org/abs/1902.09458
https://www.youtube.com/watch?v=xN-OWX5gKvQ
https://www.youtube.com/watch?v=xN-OWX5gKvQ&t=1s

Closed loop evaluation and precision / latency trade off.

Environment distribution shift grows with the policy latency.

Bigger not always better. Find the sweet spot.

Inference time

Model capacity

Certainty / safety

Function approximations and PoMDP

RL Training
Algorithm Training environment

Observations, rewards

Actors

Training Agent
Replay Buffer

Actions

PoMDP doesn’t say anything about function approximations.

Function approximations and PoMDP

RL Training
Algorithm Training environment

Observations, rewards

Actors

Training Agent
Replay Buffer

Actions

PoMDP doesn’t say anything about function approximations.

Experimentation with NN architectures.

Function approximations and PoMDP

RL Training
Algorithm Training environment

Observations, rewards

Actors

Training Agent
Replay Buffer

Actions

Simulator design and Markovian property violation.

More complicated stack.

Real / eval.
environment

Sim2Real

Application Implications: Safety and Generalization

RL Training
Algorithm Training environment

Observations, rewards

Actors

Training Agent
Replay Buffer

Actions

Often can cause damage, and needs to work in unstructured environments.

Training environment design and generalization methods.

Real / eval.
environment

Sim2Real

How is RL different from SL? And why is it difficult to train?

PoMDP
Design

Closed Loop
Training and
Evaluation

Application

Distributional
ShiftModel

latency

Function
Approximation

Simulator
Design

Safety

Generalization and
uncertainty

Training stability

Algorithmic Design

RL Training
Algorithm Training environment

Observations, Rewards

Reality of Training and Evaluating RL Agents

Actors

Training Agent
Replay Buffer

Real / eval.
environment

Image credit: DALL-E

Actions Sim2Real

Performance

Find hyperparameters for:

● RL-focused components (Algorithm, NAS)
● Task definition (reward)
● Agent (observations, simulator, actions)
● Environment (curriculum)

RL Training
Algorithm Training environment

Observations, Rewards

Reality of Training and Evaluating RL Agents

Actors

Training Agent
Replay Buffer

Real / eval.
environment

Actions Sim2Real

Performance

Find hyperparameters for:

● RL-focused components (Algorithm, NAS)
● Task definition (reward)
● Agent (observations, simulator, actions)
● Environment (curriculum)

Auto RL

Performance: objectives, rewards, gradients

RL Training
Algorithm Training environment

Observations, Rewards

Reality of Training and Evaluating RL Agents

Actors

Training Agent
Replay Buffer

Real / eval.
environment

Actions Sim2Real

Find hyperparameters for:

● RL-focused components (Algorithm, NAS)
● Task definition (reward)
● Agent (observations, simulator, actions)
● Environment (curriculum)

Auto RL

Environment

Observations, Rewards

AutoRL Problem Formulation

Actions

Performance

Auto RL

Outer loop Inner loop

Bi-level optimization problem.

Symbolic
Parametrized

functions

Hyperparameter Taxonomy by Type

A
B C

D

Categorical Vector

Combination

Learning Hyperparameters
Low-parameter regime High-parameter regime

Non-linear co-dependencies?

Image credit: Colton Bishop Image credit: [Co-Reyes et al., 2021]

Hyperparameter Taxonomy by Training-step Dependence

Image credit: [Parker-Holder et al., JAIR 2022]

Step 1 Step 1000 Step 10000
Inner loop training

Hyperparameters

Non-stationaryStationary

Exploration rate
Learning rate

[Jaderberg et al., 2017;
Zhang et al., 2021]

Seed
Discount factor

Neural Network Architecture?
Discount factor?
Replay buffer size?
Replay buffer sampling policy?
Loss function?

Is there an optimal hyperparameter for the entire inner training loop?

AutoRL Cost

28 hyperparameters w/o NAS, algorithm, and env design

High-parameter regime

Outer loop search space extreme size

Inner loop slow evaluation

RL training often requires millions of samples and days of
training.

[Agarwal et al., 2022]

https://arxiv.org/pdf/2206.01626.pdf

AutoRL Design Considerations

Hyperparameters -- everything not in PoMDP.

● Categorical, symbolic, continuous,
differentiable

● Stationary or nonstationary
● Co-dependencies.

Environment

Observations, Rewards

Actions

Performance

Auto RL

Expensive evaluations.

● Search in large spaces
● Long evaluations (hours or days)

Proprietary + Confidential

AutoRL Training Methods

Training Methods

● Search
● Gradient-free methods

○ Evolutionary methods
● Optimization methods

○ Bayesian Optimization
○ Gradient-based (MAML)

● Multi Arm bandits
● Population-based Training

Training Methods - Search

Image credit: [Parker-Holder et al., JAIR 2022]

In multidimensional search spaces, random search provides more information
about the objective function.

Grid search Random search

Training Methods - Evolutionary Methods

Training Methods - Multi-Arm Bandits

Image credit: Bo Liu

A

B C

D

Little 4-armed octopus bandit

Stateless action selection

[Zhou, 2015]

https://arxiv.org/abs/1508.03326

Training Methods - Bayesian Optimization

Regressor (e.g. Gaussian Process):
Uncertainty estimates of the

objective function.

Acquisition function:
Explore / exploit trade-off on f.

Next sample recommendation:
Argmax of the acquisition

function.

Image credit: [Parker-Holder et al., JAIR 2022]

Training Methods - Optimization - MAML

Credit: [Finn et al., ICML 2017]

https://arxiv.org/abs/1703.03400

Training Methods - Population-based Methods

Image Credit: Deepmind

PBT jointly optimizes a population of models and their
Hyperparameters. Nonstationary parameters.

[Jaderberg et al, 2017]

https://arxiv.org/pdf/1711.09846.pdf

Training Methods - Trade-offs

Image credit: [Parker-Holder et al., JAIR 2022]

Proprietary + Confidential

What to learn?

What to learn?

RL-focused components
● Tools for Hyperparameters
● Neural Architecture Search (NAS)
● RL Algorithm Learning

Task components: Reward

Agent-based environment learning

Environment-based learning

Environment

Observations, Rewards

Actions

Performance

Auto RL

Hyperparameter Tuning Packages

Thou shall learn hyperparameters.

● Services: Host algorithms on a server.
○ More flexible + scalable
○ Additional engineering complexity

● Frameworks: Execute entire optimization (both
algorithm + user evaluation)

○ Convenient, full automation
○ Requires knowledge of entire evaluation pipeline

● Libraries: Implement blackbox optimization
algorithms

○ Offer most freedom
○ Lack scalability features / limited to single machine

Open Source Vizier Service
OSS Vizier Service: Allows distributed multi-client + reliable tuning
Supports most types of blackbox optimization

Thou shall learn hyperparameters.
Image Credit: [Song et al., AutoML-Conf Systems 2022]

github.com/google/vizier
AutoML-Conf Systems 2022

https://github.com/google/vizier

Demo w/ OSS Vizier + Dopamine RL

Thou shall learn hyperparameters.

Vizier Dopamine
Evaluator +

Search Space +
Algorithm

Client + IDs

Evaluation Loop
Atari100K

Image Credit: [Machado et al, JAIR 2018]

(More in github.com/google/vizier/tree/main/demos)

https://github.com/google/vizier/tree/main/demos

What to Learn? Neural Network Architectures

Environment

Observations, Rewards

Actions

Performance

Auto RL

What to learn? Neural Network Architectures

Architectures matter for:
● Inference Speed
● Generalization
● Sample Complexity
● Adaptation

Credit: [Cobbe et al. ICML 2020]

Credit: [Ghost Robotics]

Credit: [Yu et al. CoRL 2019]

Efficient Methods in NAS for RL

Original trial-by-trial formulation: Way too slow +
expensive.
● CIFAR-10 already takes 2000+ GPU days to do

NAS! [Zoph et al, CVPR 2018]
● In RL, noisy evaluation only makes it worse!

What are some efficient methods?

Credit: Depositphotos (Stock)

Credit: [Houthooft, NeurIPS 2016]

Low Parameter Regime
Low Parameter Regime (~10K weights): Optimize architecture + weights simultaneously

● Evolutionary Methods
○ NEAT [Stanley + Miikkulainen, EC 2002]
○ Regularized Evolution [Real et al., AAAI 2019]
○ ES-ENAS [Song et al, 2022]

Environments Architectures

Cartpole Mujoco Gaier + Ha, NeurIPS
2019

Stanley + Miikkulainen,
Evolutionary Computation

2002

Caveat: Zero-order methods suffer under too many weight parameters.

High Parameter Regime: DARTS

High Parameter Regime (1M+ weights): Gradients for weight-training
● DARTS [Liu et al, ICLR 2019] used for RL in [Miao et al,

AutoML-Conf 2022]: Minimally invasive!

Credit: [Cobbe et al. ICML 2020]

Credit: [Miao et al. AutoML-Conf 2022] Credit: [Miao et al. AutoML-Conf 2022]

github.com/google/brain_autorl/tree/main/rl_darts

https://github.com/google/brain_autorl/tree/main/rl_darts

High Parameter Regime (Open Questions)
Possible Methods for NAS in RL? Little work so far.

● Blackbox Optimization? How to deal w/ strong noise?
○ Regularized Evolution [Real et al, AAAI 2019]?
○ BayesOpt?

● Other weight sharing methods? How to make simple?
○ ENAS [Pham et al, ICML 2018]?

● Others? How to scale to modern DL?
○ HyperNEAT [Stanley et al, Artificial Life 2009]?

Credit: [Real et al, AAAI 2019]

Credit: Roos, Blogpost on HyperNEAT, 2020 Credit: CMU ML Blog, 2020

What to Learn? RL Loss Functions

Environment

Observations, Rewards

Actions

Performance

Auto RL

Main idea: RL loss function, , is a parameterized object.

What are we learning? Algorithms!

Loss Functions

SymbolicNeural Loss

Evolutionary Gradient
Descent

Domain Specific
Language

Selection and
Search

Search space millions of parameters and ~10100 programs [Garau-Luis et al., 2022]

Careful design + pruning + optimization.

https://arxiv.org/pdf/2204.04292.pdf

What are we learning? Loss Functions Neural Loss Evolutionary

[Houthooft et al., 2018]

Loss function: temporal
convolutions NN.

Faster training + generalization to
out of distribution data.

Loss function adaptive to environment and agent history.

https://arxiv.org/pdf/1802.04821.pdf

[Bechtle et al. 2021]
[Kirsch et al., 2020]
[Oh et al., 2020]

Require Jacobian vector product
computation. Readily available.

Some cross domain generalization.

What are we learning? Loss Functions Neural Loss Gradient
Descent

MetaGenRL: population of agents train a single meta-objective
[Kirsch et al., 2020]

Learned Policy Gradient: what and how to predict
[Oh et al., 2020]

Generalize to new different domains.

https://arxiv.org/pdf/1906.05374.pdf
https://arxiv.org/pdf/1910.04098.pdf
https://arxiv.org/pdf/2007.08794.pdf
https://arxiv.org/pdf/1910.04098.pdf
https://arxiv.org/pdf/2007.08794.pdf

[Laroche and Féraud 2018]

Interpretable loss functions.

First time large databases of loss functions.
github.com/jcoreyes/evolvingrl

What are we learning? Loss Functions Symbolic Symbolic Loss
Functions

DSL for curiosity module trained w/ regressor.
Search space combines NN, buffers, custom loss,

etc. [Alet et al. 2020]

Loss function as a DAG. Lots of tricks due to size of
search space. [Co-Reyes et al. 2021]

Loss function defined with a domain specific language (DSL).

RL algorithm
performance histogram.

https://arxiv.org/pdf/1701.08810.pdf
https://github.com/jcoreyes/evolvingrl
https://arxiv.org/pdf/2003.05325.pdf
https://arxiv.org/pdf/2101.03958.pdf

What are we learning? Algorithms!
Main idea: View RL algorithms (e.g. DQN) as points in a
hyperparameter space. To discover algorithms is to do HP
tuning in that space.

HP Space

Objective

DQN

DDQN

What are we learning? Algorithms!
Main idea: View RL algorithms (e.g. DQN) as points in a
hyperparameter space. To discover algorithms is to do HP
tuning in that space.

Result: Co-Reyes et al. (2021) discovered new value-based
RL algorithms that outperform baselines. These algorithms
are interpretable, transferable, and implementable.

HP Space

Objective

DQN

DDQN

What are we learning? Algorithms!
Main idea: View RL algorithms (e.g. DQN) as points in a
hyperparameter space. To discover algorithms is to do HP
tuning in that space.

Result: Co-Reyes et al. (2021) discovered new value-based
RL algorithms that outperform baselines. These algorithms
are interpretable, transferable, and implementable.

In this Tutorial:
● Algorithm representation and search space design
● Optimization method and tricks
● Code and colab example

HP Space

Objective

DQN

DDQN

Algorithm representation and the search space
Algorithm (loss function) as a DAG

Algorithm representation and the search space
Algorithm (loss function) as a DAG How to turn this into a HP and vice versa?

Each DAG can be viewed as a sequence of
categorical HPs, one for each intermediate
node (and the output node).

1 of N1 1 of N2 1 of NLFixed inputs

Algorithm representation and the search space
Algorithm (loss function) as a DAG How to turn this into a HP and vice versa?

Each DAG can be viewed as a sequence of
categorical HPs, one for each intermediate
node (and the output node).

1 of N1 1 of N2 1 of NL

For each intermediate node: which op to use (+, -, …)?
Which previous nodes as inputs?

For the output node: which intermediate node to output?

Encoding-decoding logic is necessary for mapping
between HPs and DAGs.

Fixed inputs

Search space detail
Operations:

● Covers many known value-based RL algorithms.
● Typed inputs/outputs help to prune the search space.
● In practice, need to set a max size of the DAG (~20

worked).

This completes the specification of the HP search space.
Next:

● Define an optimization objective.
● Plug in your favorite HP tuning algorithm!

Training overview

Optimization objective: sum of normalized returns on meta-training environments

Optimization method: Regularized Evolution

Distributed training is paramount (~300 CPUs for 3 days, ~20K candidates)

Speedup tricks:
● Hurdle environment (cartpole) – fail fast!
● Functional equivalence hashing and caching – dedup!

Baselines taken from reported numbers.

DQN DQNReg

DQNReg generalizes to unseen classic
Control, MiniGrids and Atari tasks.

Trained on non-image environments.
Not tuned to Atari games.

Discovered Algorithms
DQNReg: regular DQN + a regularization term

In code and colab

A list of nodes, each node is a tunable object, as indicated by pg.oneof(<list>)

1. Search space definition

2. Search algorithm (Regularized Evolution)

PyGlove (AutoML library) Acme (RL library)

PyGlove allows arbitrarily complex HP

In code and colab (continued)
3. Main training loop

Regularized EvolutionSearch space

(decoded) HP
Evaluation result
goes here

End-to-end colab:
https://github.com/google/brain_autorl/blob/main/evolving_rl/EvolvingRL_Demo.ipynb

Toy Training Curve

https://github.com/google/brain_autorl/blob/main/evolving_rl/EvolvingRL_Demo.ipynb

What are we learning? Algorithms!

Loss Functions

SymbolicNeural Loss

Evolutionary Gradient
Descent

Domain Specific
Language

Selection and
Search

Careful design + pruning + optimization.

Generalize across domains in discrete action spaces.
PG and Actor/Critic more challenging. [Garau-Luis et al., 2022]

https://arxiv.org/pdf/2204.04292.pdf

What to Learn? Rewards

Environment

Observations, Rewards

Actions

Performance

Auto RL

Main idea: Learn intrinsic rewards that maximize the excertic rewards.

Reward tuning is difficult.

What to learn? Task Components. Rewards.

[Zhen et al. 2018] adds intrinsic
reward neural network.
Inner and outer: GD.

BiPaRS [Hu et al. 2020]
Feature-based reward shaping
function w/ meta-learning.

[Chiang et al. 2019] Feature-based
intrinsic reward w/ ES.

Sparse rewards. Difficult to design rewards.

Reward shaping helps for more complex tasks. Exact method is less important.

https://arxiv.org/abs/1804.06459
https://proceedings.neurips.cc/paper/2020/file/b710915795b9e9c02cf10d6d2bdb688c-Paper.pdf
https://arxiv.org/abs/1809.10124

[Learning Navigation Behaviors End to End with AutoRL, Chiang*, Faust,* Fiser, Francis, RA-L/ICRA 2019] [Preprint, Video]

Each trains with
mutated reward. Policy and

Reward that
makes learning the
task tractable.

Task objective.

Evaluate
RL Agent Population Training

Learn the intrinsic reward that completes task.

Mutator

Select next
parametrization based
on the performance of

the population
(CMA-ES [Hansen et al. 95])

Select policy

Spawn new training agent

Single trial: Equivalent of 12 days of training. 12 hours wall time.
1000 trials: Equivalent of 32 years of training experience. 5 days wall time.

https://arxiv.org/abs/1809.10124
https://docs.google.com/document/d/1NQrAWwOsIonwES0tW5aPxAYXqf1CvyOb5tjmV1XusjY/edit?usp=sharing
https://youtu.be/0UwkjpUEcbI

Zero-shot transfer

Differential drive. Kinodynamic constraints.

Works on variety of robots.
Generalizes to real world, unseen

environment.
Adapts to changes on the go.

[Learning Navigation Behaviors End to End with AutoRL, Chiang*, Faust,* Fiser, Francis, RA-L/ICRA 2019 Preprint, Video]

https://arxiv.org/abs/1809.10124
https://docs.google.com/document/d/1NQrAWwOsIonwES0tW5aPxAYXqf1CvyOb5tjmV1XusjY/edit?usp=sharing
https://youtu.be/0UwkjpUEcbI

How general is intrinsic reward learning?

[Evolving Rewards to Automate Reinforcement Learning, Faust, Francis, Mehta, 6th AutoML @ ICML 2019] [Preprint, Video]

SAC [Haarnoja et al, 2018]

Intrinsic reward helps in more complex tasks.

PPO [Schulman et al, 2017]

DDPG [Lillicrap et al, 2015]

Learn the rewards instead of hyper-parameter
tuning, on a fixed training budget.

Codependency between RL algorithm and
intrinsic reward.

Simple objective performs almost as well --
without hand engineering.

https://arxiv.org/abs/1905.07628
https://www.youtube.com/watch?v=svdaOFfQyC8&feature=youtu.be

Environment

Observations, Rewards

Actions

Performance

Auto RL

What to Learn? Environment-based learning.

What to learn? Agent-based environment learning.

[Raileanu et al. 2021] UCB bandit selects image transformations for observations.

[Farahani and Mozayani
2019] combine actions

into macro w/ GA

FiGAR learns action
and its duration.

[Sharma et al, 2017].Action Space

Observations

Dynamics
World Models learn vision, memory, and

environment w/ VAE.
[Ha and Schmidhuber, 2018]

https://proceedings.neurips.cc/paper/2021/file/2b38c2df6a49b97f706ec9148ce48d86-Paper.pdf
https://www.sciencedirect.com/science/article/abs/pii/S1568494619303540
https://www.sciencedirect.com/science/article/abs/pii/S1568494619303540
https://arxiv.org/pdf/1702.06054.pdf
https://arxiv.org/pdf/1803.10122.pdf

[Kanitscheider et al, 2019]
Learning progress based

multi-task curriculum

What to Learn? Curriculum.

Order of tasks and environments for the agent to train on.

Combinatorial
Multi-Objective Evolutionary

Algorithm (CMOEA)
[Huizinga and Clune, 2019]

PAIRED constrained environment
generation and RL agent.

[Dennis et al, 2020]

Improves generalization. Sensitive to learning methods.

https://arxiv.org/pdf/2106.14876.pdf?curius=506
https://arxiv.org/pdf/1807.03392.pdf
https://arxiv.org/abs/2012.02096

LEARNA: reward + neural architecture +
learning hyperparameters

[Runge et al, 2019]

Auto-pilot: NAS + accelerator
[Krishnan et al, 2022]

What to Learn? Combination of components.

https://openreview.net/forum?id=ByfyHh05tQ
https://arxiv.org/abs/2102.02988

Summary of What to Learn?

What we know

Do learn learning HP.

Do learn intrinsic rewards for
complex problems. Codependency
with RL algorithm.

Do use curriculum for complex
problems. Sensitive to task.

Loss function learning has promising
generalization results in discrete
action spaces. Requires careful
design + pruning + optimization.

What we don’t know

Very little work in NAS.

Very little work in agent learning.

What are important components to
learn?

Which HP are nonstationary?

How to learn many components?

What are the best learning methods
for each component?

Proprietary + Confidential

Open Problems

Open Problems
● Theoretical understanding

○ HP co-dependencies.
○ Learning method appropriateness.

● Practical benchmarks
○ Non-trivial RL problem, and tractible outer loop.
○ Metrics.

● Nurture vs. nature trade off

● Integrative methods
○ Population-based training, multi-generational evolution + GD
○ Larger groups of HP, rewards, models, full algorithms.

Proprietary + Confidential

Summary

TL;Dr;
Fundamental difference between RL and SL - more knobs and interdependencies. Stability
of training and generalization due to non-stationarity and out of distribution.

Future: Co-dependencies. Nonstationary hyperparameters. Scaling up.

Computational cost (AutoRL) = cost (AutoML) x cost (RL)

Learn selected parts of the system: learning HP, NAS, loss, rewards, agent and
environment components.

Hyperparameter taxonomy: numerical, symbolic, neural. Stationary or nonstationary.

Demos:
github.com/google/vizier/tree/main/demos
github.com/google/brain_autorl/blob/main/evolving_rl/EvolvingRL_Demo.ipynb
github.com/jcoreyes/evolvingrl

https://github.com/google/vizier/tree/main/demos
https://github.com/google/brain_autorl/blob/main/evolving_rl/EvolvingRL_Demo.ipynb
https://github.com/jcoreyes/evolvingrl

79

Ten+ years of full AutoRL training.
Joint curriculum and nonstationary hyperparameter training.

Acknowledgements

Yingjie Miao John D. Co-Reyes

Richard Song Jack Parker-Holder

Thank You
Fundamental difference between RL and SL - more knobs and interdependencies. Stability
of training and generalization due to non-stationarity and out of distribution.

Hyperparameter taxonomy: numerical, symbolic, neural. Stationary or nonstationary.

Future: Co-dependencies. Nonstationary hyperparameters. Scaling up.

Demos:
github.com/google/vizier/tree/main/demos
github.com/google/brain_autorl/blob/main/evolving_rl/EvolvingRL_Demo.ipynb
github.com/jcoreyes/evolvingrl

Computational cost (AutoRL) = cost (AutoML) x cost (RL)

Learn selected parts of the system: learning HP, NAS, loss, rewards, agent and
environment components.

https://github.com/google/vizier/tree/main/demos
https://github.com/google/brain_autorl/blob/main/evolving_rl/EvolvingRL_Demo.ipynb
https://github.com/jcoreyes/evolvingrl

